File Formats

for VTK Version 4.2

(Taken from The VTK User’s Guide
Contact Kitware www.kitware.com to purchase)

VTK File Formats

The Visualization Toolkit provides a number of source and writer objects to read and write popular data file formats. The
Visualization Toolkit also provides some of its own file formats. The main reason for creating yet another data file format
is to offer a consistent data representation scheme for a variety of dataset types, and to provide a simple method to com-
municate data between software. Whenever possible, we recommend that you use formats that are more widely used. But
if thisisnot possible, the Visualization Toolkit formats described here can be used instead. Note that these formats may not
be supported by many other tools.

There are two different styles of file formats available in VTK. The simplest are the legacy, seria formats that are
easy to read and write either by hand or programmatically. However, these formats are less flexible than the XML based
file formats described later in this section. The XML formats support random access, parallel 1/0, and portable data com-
pression and are preferred to the serial VTK file formats whenever possible.

Simple Legacy Formats
Thelegacy VTK file formats consist of five basic parts.

1. Thefirst partisthefile version and identifier. This part contains the singleline: # vt k Dat aFi | e Ver si on x. x.
This line must be exactly as shown with the exception of the version number x. x, which will vary with different
releases of VTK. (Note: the current version number is 3.0. Version 1.0 and 2.0 files are compatible with version 3.0
files)

2. The second part isthe header. The header consists of a character string terminated by end-of-line character \ n. The
header is 256 characters maximum. The header can be used to describe the data and include any other pertinent
information.

3. Thenext part isthefileformat. The file format describes the type of file, either ASCII or binary. On thislinethe sin-
gleword ASCI | or Bl NARY must appear.

4. The fourth part is the dataset structure. The geometry part describes the geometry and topology of the dataset. This
part begins with aline containing the keyword DATASET followed by a keyword describing the type of dataset.
Then, depending upon the type of dataset, other keyword/data combinations define the actual data.

5. Thefinal part describes the dataset attributes. This part begins with the keywords PO NT_DATA or CELL_DATA, fol-
lowed by an integer number specifying the number of points or cells, respectively. (It doesn't matter whether
PO NT_DATA or CELL_DATA comesfirst.) Other keyword/data combinations then define the actual dataset attribute
values (i.e., scalars, vectors, tensors, normals, texture coordinates, or field data).

An overview of the file format is shown in Figure 1. The first three parts are mandatory, but the other two are optional.

Thus you have the flexibility of mixing and matching dataset attributes and geometry, either by operating system file

manipulation or using VTK filtersto merge data. Keywords are case insensitive, and may be separated by whitespace.
Before describing the data file formats please note the following.

 dataType is one of the types bit, unsi gned_char, char, unsi gned_short, short, unsi gned_int, int,
unsi gned_| ong, | ong, fl oat, or doubl e. These keywords are used to describe the form of the data, both for
reading from file, as well as constructing the appropriate internal objects. Not all data types are supported for all
classes.

2 VTK 4.2 File Formats

vtk DataFile Version 2.0 J@
Really cool data 1@

ASCII | BINARY 7]

DATASET type :I @

POINT DATA n

5)
CELL_DATAnN

Part 1: Header Part 4: Geometry/topology. Typeis one of:
STRUCTURED_POl NTS
STRUCTURED_GRI D
UNSTRUCTURED GRI D
Part 3: Datatype, either ASCII or BINARY POLYDATA

RECTI LI NEAR_GRI D

FI ELD

Part 2: Title (256 characters maximum, termi-
nated with newline\ n character)

Part 5: Dataset attributes. The number of data
items N of each type must match the number
of pointsor cellsin the dataset. (If typeis

FI ELD, point and cell data should be omitted.

Figure 1 Overview of five partsof VTK datafile format.

« All keyword phrases are written in ASCII form whether the fileisbinary or ASCII. The binary section of thefile (if
in binary form) is the data proper; i.e., the numbers that define points coordinates, scalars, cell indices, and so forth.

* Indices are 0-offset. Thusthefirst point is point id 0.

« |If both the data attribute and geometry/topology part are present in the file, then the number of data values defined
in the data attribute part must exactly match the number of points or cells defined in the geometry/topology part.

e Cell typesand indices are of typei nt .

« Binary data must be placed into the file immediately after the “newline” (\ n) character from the previous ASCI|
keyword and parameter sequence.

» The geometry/topology description must occur prior to the data attribute description.

Binary Files. Binary filesin VTK are portable across different computer systems as long as you observe two conditions.
First, make sure that the byte ordering of the datais correct, and second, make sure that the length of each datatypeis con-
sistent.

Most of the time VTK manages the byte ordering of binary files for you. When you write a binary file on one com-
puter and read it in from another computer, the bytes representing the data will be automatically swapped as necessary.
For example, binary files written on a Sun are stored in big endian order, while those on a PC are stored in little endian
order. As a result, files written on a Sun workstation require byte swapping when read on a PC. (See the class
vtkByteSwap for implementation details.) The VTK data files described here are written in big endian form.

Some file formats, however, do not explicitly define a byte ordering form. You will find that data read or written by
external programs, or the classes vtkVolumel6Reader, vtkM CubesReader, and vtkM CubesWriter may have a different
byte order depending on the system of origin. In such cases, VTK allows you to specify the byte order by using the meth-
ods

Set Dat aByt eOr der ToBi gEndi an()
Set Dat aByt eOr der ToLi t t | eEndi an()

Simple Legacy Formats 3

Another problem with binary files is that systems may use a different number of bytes to represent an integer or other
native type. For example, some 64-bit systems will represent an integer with 8-bytes, while others represent an integer
with 4-bytes. Currently, the Visualization Toolkit cannot handle transporting binary files across systems with incompatible
datalength. In this case, use ASCII file formats instead.

Dataset Format. The Visualization Toolkit supports five different dataset formats: structured points, structured grid, recti-
linear grid, unstructured grid, and polygonal data. Data with implicit topology (structured data such as vtkimageData and
vtkStructuredGrid) are ordered with x increasing fastest, then y, then z. These formats are as follows.

» Structured Points
Thefile format supports 1D, 2D, and 3D structured point datasets. The dimensions ny, ny, n, must be greater than or
equal to 1. The dataspacing s, sy, s, must be greater than 0. (Note: in the version 1.0 data file, spacing was referred
to as “aspect ratio”. ASPECT_RATI Ocan still be used in version 2.0 datafiles, but is discouraged.)

DATASET STRUCTURED_PQO NTS
DI MENSI ONS ny ny n,

ORIG NXyz

SPACI NG 5,5,S,

* Structured Grid
The file format supports 1D, 2D, and 3D structured grid datasets. The dimensions n, n,, n, must be greater than or
equal to 1. The point coordinates are defined by the datain the PO NTS section. This consists of x-y-z data values for
each point.

DATASET STRUCTURED GRI D
DI MENSI ONS ny ny N,

PO NTS n dataType

Pox pOy Poz

P1x ply P12

5(n-1)x P(n-1)y P(n-1)z

* Rectilinear Grid
A rectilinear grid defines a dataset with regular topology, and semi-regular geometry aligned along the x-y-z coordi-
nate axes. The geometry is defined by three lists of monotonically increasing coordinate val ues, one list for each of
the x-y-z coordinate axes. The topology is defined by specifying the grid dimensions, which must be greater than or
equal to 1.

DATASET RECTI LI NEAR_GRI D
DI MENSI ONS ny ny N,

X_COORDI NATES n, dataType
X0 X1 ... X(nx-1)

Y_COCRDI NATES ny, dataType

YoY1.. Yny-1)
Z_COORDI NATES n, dataType

D74 ... 4nz1)

« Polygona Data
The polygonal dataset consists of arbitrary combinations of surface graphics primitives vertices (and polyvertices),
lines (and polylines), polygons (of various types), and triangle strips. Polygonal data is defined by the PO NTS
VERTI CES, LI NES, POLYGONS, or TRI ANGLE_STRI PS sections. The PO NTS definition is the same as we saw for
structured grid datasets. The VERTI CES, LI NES, POLYGONS, or TRI ANGLE_STRI PS keywords define the polygonal
dataset topology. Each of these keywords requires two parameters: the number of cells n and the size of the cell list
size. The cell list sizeis the total number of integer values required to represent the list (i.e., sum of numPoints and

VTK 4.2 File Formats

connectivity indices over each cell). None of the keywords VERTI CES, LI NES, POLYGONS, or TRI ANGLE_STRI PS
isrequired.

DATASET POLYDATA
PO NTS n dataType
Pox pOy Poz

P1x ply P12

6(n-1)x P(n-1)y P(n-1)z

VERTI CES nsize

numPointsy, i, jo. Ko, ---
numPoints;, iq, j1, Ky, ...

NUMPOINtS,_1, In-1 Jn-1 Knets o

LI NESnsize

numPointsy, ig, jo. Ko, ---
numPointsy, iq, j1, Ky, ...

NUMPOINtS,_1, in-1 Jn-1 Kt -

POLYGONS n size

numPointsy, i, jo. Ko, ---
numPointsy, iq, j1, Ky, -

NUMPOINtS,_1, -1 Jn-1 Knets o

TRI ANGLE_STRI PS nsize
numPointsy, i, jo. Ko, ---
numPoints;, iq, j1, Ky, -

NUMPOINtS,_1, in-1: in-1, Kn1, -

Unstructured Grid

The unstructured grid dataset consists of arbitrary combinations of any possible cell type. Unstructured grids are
defined by points, cells, and cell types. The CELLS keyword requires two parameters. the number of cells n and the
size of the cell list size. The cell list size is the total number of integer values required to represent the list (i.e., sum
of numPoints and connectivity indices over each cell). The CELL_TYPES keyword requires a single parameter: the
number of cellsn. Thisvalue should match the value specified by the CELLS keyword. The cell typesdataisasingle
integer value per cell that specified cell type (seevt kCel | . h or Figure 2).

DATASET UNSTRUCTURED GRI D
PO NTS n dataType

Pox pOy Poz

Pix ply P12

b-(n-l)x P(n-1)y P(n-1)z

CELLSnsize

numPointsy, i, j, K, 1, ...
numPointsy, i, j, K, 1, ...
numPoaintsy, i, j, K, 1, ...

numPoaints,_q, 1, j, K I, ...

Simple Legacy Formats 5

CELL_TYPESnNn
typeg
type;
type,

typen.1

 Field
Field datais a general format without topological and geometric structure, and without a particular dimensionality.
Typically field data is associated with the points or cells of a dataset. However, if the FI ELD type is specified as the
dataset type (see Figure 1), then ageneral VTK data object is defined. Use the format described in the next section
to define afield. Also see “Working With Field Data” on page 158 and the fourth example in this chapter “ Exam-
ples’ on page 7.

Dataset Attribute Format. The Visualization Toolkit supports the following dataset attributes: scalars (one to four com-
ponents), vectors, normals, texture coordinates (1D, 2D, and 3D), 3 x 3 tensors, and field data. In addition, alookup table
using the RGBA color specification, associated with the scalar data, can be defined as well. Dataset attributes are sup-
ported for both points and cells.

Each type of attribute data has a dataName associated with it. This is a character string (without embedded
whitespace) used to identify a particular data. The dataName is used by the VTK readers to extract data. Asaresult, more
than one attribute data of the same type can be included in afile. For example, two different scalar fields defined on the
dataset points, pressure and temperature, can be contained in the samefile. (If the appropriate dataName is not specified in
the VTK reader, then the first data of that typeis extracted from thefile.)

o Scaars
Scalar definition includes specification of a lookup table. The definition of alookup table is optional. If not speci-
fied, the default VTK table will be used (and tableName should be “def aul t ”). Also note that the numComp vari-
able is optiona—by default the number of components is equal to one. (The parameter numComp must range
between (1,4) inclusive; in versions of VTK prior to vtk2.3 this parameter was not supported.)

SCALARS dataName dataType numComp
LOOKUP_TABLE tableName

S0
S

Sh-1

The definition of color scalars (i.e., unsi gned char values directly mapped to color) varies depending upon the
number of values (nValues) per scalar. If thefile format isASCI | , the color scalars are defined using nValuesf | oat

values between (0,1). If thefile format is Bl NARY, the stream of data consists of nValues unsi gned char values per
scalar value.

COLOR_SCALARS dataName nvalues

Coo Co1 - Co(nvalues-1)
C10 C11 - C1(nvalues-1)

C(n-1)0 C(n-1)1 - C(n-1)(nvalues-1)

« Lookup Table
The tableName field is a character string (without imbedded white space) used to identify the lookup table. This
label isused by the VTK reader to extract a specific table.

Each entry in the lookup tableisar gba[4] (red-green-blue-alpha) array (alpha is opacity where alpha=0 is trans-
parent). If thefile format isASCI | , the lookup table values must bef | oat values between (0,1). If thefileformat is

VTK 4.2 File Formats

BI NARY, the stream of data must be four unsigned char values per table entry.

LOOKUP_TABLE tableName size

o%oboag
rigib1ag

lsize-1 9size-1 bsizel Q5761
Vectors

VECTORS dataName dataType
Vox Voy Voz
Vix Vly V17

(/-(n-l)x Vin-1y V(n-1)z

Normals
Normals are assumed normalized n| = 1.

NORMAL S dataName dataType
Nox Noy Noz
Nix nly Nyz

F‘.(n—l)x n(n—l)y rl(n—l)z

Texture Coordinates
Texture coordinates of 1, 2, and 3 dimensions are supported.

TEXTURE_COORDI NATES dataName dim dataType
too toz -+ to(dim-1)
t10 t11 - ty(dim-1)

i:(-n-l)O tn-1)1 - Yn-1)(dim-2)

Tensors
Currently only 3 x 3 real-valued, symmetric tensors are supported.

TENSORS dataName dataType
%0 t%; &

00t 01t 02

Yot 1 t

tolo ton t012

20021122

1 1 4
tootor o2
tllotntz
toto tn

tn-l tn- 1 tn- 1
00 01 02
tn-l tn'l tn- 1
10 11 2
tn'l tn- 1 tn-
20 21 22

Field Data

Field datais essentialy an array of data arrays. Defining field data means giving a name to the field and specifying
the number of arrays it contains. Then, for each array, the name of the array arrayName(i), the number of compo-
nents of the array, numComponents, the number of tuples in the array, numTuples, and the data type, dataType, are

Simple Legacy Formats 7

defined.

FI ELD dataName numArrays
arrayNameO numComponents numTuples dataType

fOO fOl fO(numComponents—l)
flo fJ_’L f1(numComponents—1)

f(numTupI%—l)O f(numTupI%—l)l f(numTupI5—1)(numComponents—1)

arrayNamel numComponents numTuples dataType

fOO fOl fO(nurrComponents—l)
flo fJ_’L f1(numComponents—1)

f(numTupI%—l)O f(numTupI%—l)l f(numTupI5—1)(numComponents—1)

arrayName(numArrays-1) numComponents numTuples dataType

fOO fOl fO(numComponents—l)
flo fJ_'L f1(numComponents—l)

f(numTupIas—l)O f(numTupIeﬁ-l)l f(numTupIes-l)(numComponents—l)

Examples. Thefirst exampleis acube represented by six polygonal faces. We define a single-component scalar, normals,
and field data on the six faces. There are scalar data associated with the eight vertices. A lookup table of eight colors,
associated with the point scalars, is also defined.

vtk DataFile Version 2.0
Cube exanpl e

ASCI |

DATASET POLYDATA

PO NTS 8 fl oat

©

[eNecNolNoNeNoNoNe]

PPPPOOOO
o

ARERARRRPORPOOREO
HONO#OEOOOOOOOO
(o2}
w
o

CELL_DATA 6
SCALARS cel |l _scalars int 1
LOOKUP_TABLE def aul t

a b wNEFE O

NORMALS cel | _nornmal s fl oat

8 VTK 4.2 File Formats

00 -1

001

0-10

010

-100

100

FI ELD Fi el dData 2
celllds 1 6 int
012345
faceAttributes 2 6 float
0.0 1.0 1.02.02.03.03.04.04.05.05.06.0

PO NT_DATA 8
SCALARS sanpl e_scalars float 1
LOOKUP_TABLE ny_tabl e

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
LOOKUP_TABLE ny_tabl e 8
0.0 0.0 0.0 1.0
1.0 0.0 0.0 1.0
0.0 1.0 0.0 1.0
1.0 1.0 0.0 1.0
0.0 0.01.01.0
1.0 0.0 1.0 1.0
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

The next exampleisavolume of dimension 3 x 4 x 5. Since no lookup tableis defined, either the user must create onein
VTK, or the default lookup table will be used.

vtk DataFile Version 2.0

Vol une exanpl e

ASClI |

DATASET STRUCTURED_PO NTS
DIMENSIONS 3 4 6

ASPECT RATIO 1 1 1

ORIANO0 OO

PO NT_DATA 72

SCALARS vol umre_scal ars char 1
LOOKUP_TABLE def aul t
000000OO0OO0OOOODO

0510 15 20 25 25 20 15105 0
0 10 20 30 40 50 50 40 30 20 10 O
0 10 20 30 40 50 50 40 30 20 10 O
05 10 15 20 25 25 20 15 10 5 0
000000OO0OO0OOOODO

The third exampleis an unstructured grid containing twelve of the nineteen VTK cell types (see Figure 2 and Figure 3).
The file contains scalar and vector data.

vtk DataFile Version 2.0
Unstructured Gid Exanple
ASCl |

Simple Legacy Formats

VTK_VERTEX (=1)

0 n-1
\/'/‘\, n
1

VTK_POLY_LI NE (=4)

VTK_POLY_VERTEX (=2) VTK_LI NE (=3)

1 n+l

0 0 n
VTK_TRI ANGLE(=5) VTK_TRI ANGLE_STRI P (=6)

n-2 2
2 3
1
[in
0 1 0 1 0
VTK_POLYGON (=7) VTK_PI XEL (=8) VTK_QUAD (=9)
3 7 6
2 4 ‘
0 1 ’
0 1
VTK_TETRA (=10) VTK_VOXEL (=11) VTK_HEXAHEDRON (=12)
5 4
2
2
3
3
1
0 0 !
VTK _VEDCE (=13) VTK_PYRAM D (=14)

Figure 2 Linear cell typesfound in VTK. Use theinclude file Cell Type.h to manipul ate cell types.

DATASET UNSTRUCTURED_CRI D

PO NTS 27 fl oat

000 100 200 01
001 101 201 01
012 112 212 01
014 114 214 01
016 116 216

CELLS 11 60

U wr o
PR PR
PR PR
U wrR o
NN N
Y
U wr o

10

VTK 4.2 File Formats

PNWOWWRAAOO S DMOWOW
H
(o]

CELL
12
12
10
10

7

= wWolotoo

2 6 ?
4 3 5
0 2
5
Dl AV
1 0 3 0 4

VTK_QUADRATI C_EDGE VTK_QUADRATI C_TRI ANGLE VTK_QUADRATI C_QUAD
(=21) (=22) (=23)
3
2 4
2 8
16
1
VTK_QUADRATI C_TETRA VTK_QUADRATI C_HEXAHEDRON
(=24) (=25)
Figure 3 Non-linear cell typesfound in VTK.
14367 109
2547 8 11 10
10 9 12
11 10 14
16 17 14 13 12
15 19 16 20 17
23 20 19
22 18
19 18
25
_TYPES 11

PO NT_DATA 27

SCAL

ARS scalars float 1

LOOKUP_TABLE def aul t

0.0
6.0
12.0
18.0
24.0

1.0 2.0 3.0 4.0 5.0

7.0 8.0 9.0 10.0 11.0
13.0 14.0 15.0 16.0 17.0
19.0 20.0 21.0 22.0 23.0
25.0 26.0

VECTCRS vectors float

10

0 110 020 100 110 020

XML File Formats 11

(ool
[eNeNe N
P~ PFPO
(el ool
(el ool
R PP O
[eNelNeNo)
OoOoonN
P PP O
O OoOr
[eNeNe)
= = O
OO
oo
[l pull &)
[eNeNe)
oOoOoN
[l pul &)

The fourth and final example is data represented as a field. You may also wish to see “Working With Field Data’ on
page 158 to see how to manipulate this data. (The data file shown below can be found in its entirety in
$VTK_DATA ROOT/ Dat a/ fi nanci al . vtk.)

vtk DataFile Version 2.0
Financial data in vtk field format
ASCI |
FIELD financi al Data 6
TI ME_LATE 1 3188 fl oat
29. 14 0. 00 0.00 11.71 0. 00 0. 00 0. 00 0. 00
...(nore stuff —3188 total values)...

MONTHLY_PAYMENT 1 3188 fl oat
7.26 5.27 8.01 16.84 8.21 15.75 10.62 15.47
...(nmore stuff)...

UNPAI D_PRI NCI PLE 1 3188 fl oat
430.70 380.88 516.22 1351.23 629.66 1181.97 888.91 1437.83
...(more stuff)...

LOAN_AMOUNT 1 3188 f | oat
441.50 391.00 530.00 1400.00 650.00 1224.00 920.00 1496.00
...(more stuff)...

| NTEREST_RATE 1 3188 fl oat
13.875 13.875 13.750 11.250 11.875 12.875 10.625 10.500
...(more stuff)...

MONTHLY_I NCOVE 1 3188 unsi gned_short
39 51 51 38 35 49 45 56
...(more stuff)...

In thisexample, afield isrepresented using six arrays. Each array has a single component and 3,188 tuples. Five of the six
arrays are of typef | oat , while the last array is of typeunsi gned_short .
Additional examples are available in the data directory.

XML File Formats

VTK provides another set of data formats using XML syntax. While these formats are much more complicated than the
original VTK format described previously (see “Simple Legacy Formats’ on page 1), they support many more features.
The major motivation for their development was to facilitate data streaming and parallel 1/0. Some features of the format
include support for compression, portable binary encoding, random access, big endian and little endian byte order, multi-
ple file representation of piece data, and new file extensions for different VTK dataset types. XML provides many fea-
tures as well, especially the ability to extend afile format with application specific tags.

There are two types of VTK XML datafiles: parallel and serial as described in the following.

» Serial. File types designed for reading and writing by applications of only a single process. All of the data are con-
tained within asinglefile.

« Parallel. File types designed for reading and writing by applications with multiple processes executing in parallel.
The dataset is broken into pieces. Each process is assigned a piece or set of pieces to read or write. An individual
piece is stored in a corresponding seria file type. The parallel file type does not actualy contain any data, but
instead describes structural information and then references other serial files containing the data for each piece.

Inthe XML format, VTK datasets are classified into one of two categories.

12 VTK 4.2 File Formats

e Structured. The dataset isatopologically regular array of cells such as pixels and voxels (e.g., image data) or quad-
rilaterals and hexahedra (e.g., structured grid) (see “The Visualization Model” on page 19 for more information).
Rectangular subsets of the data are described through extents. The structured dataset types are vtklmageData,
vtkRectilinearGrid, and vtkStructuredGrid.

¢ Unstructured. The dataset forms a topologically irregular set of points and cells. Subsets of the data are described
using pieces. The unstructured dataset types are vtkPolyData and vtkUnstructuredGrid (see “The Visualization
Model” on page 19 for more information).

By convention, each data type and file type is paired with a particular file extension. The types and corresponding exten-
sions are

* ImageData (. vt i) — Serial vtkimageData (structured).

» PolyData(. vt p) — Seria vtkPolyData (unstructured).

* RectilinearGrid (. vt r) — Seria vtkRectilinearGrid (structured).

o StructuredGrid (. vt s) — Serial vtkStructuredGrid (structured).

¢ UnstructuredGrid (. vt u) — Serial vtkUnstructuredGrid (unstructured).

* PlmageData (. pvti) — Paralel vtkimageData (structured).

« PPolyData (. pvt p) — Parallel vtkPolyData (unstructured).

* PRectilinearGrid (. pvt r) — Parallel vtkRectilinearGrid (structured).

e PStructuredGrid (. pvt s) — Paralel vtkStructuredGrid (structured).

* PUnstructuredGrid (. pvt u) — Parallel vtkUnstructuredGrid (unstructured).

All of the VTK XML file typesare valid XML documents.” The document-level element is VTKFi | e:
<VTKFi | e type="1mageData” version="0.1" byte_order="Littl eEndi an”>
</ i/ﬁ'kFi | e>

The attributes of the element are:
t ype — Thetype of the file (the bulleted itemsin the previouslist)..
ver si on — File version number in “major.minor” format.
byt e_or der — Machine byte order in which data are stored. Thisis either “BigEndian” or “LittleEndian”.

conpr essor — Some data in the file may be compressed. This specifies the subclass of vtkDataCompressor that
was used to compress the data.

Nested inside the VTKFi | e element is an element whose name corresponds to the type of the dataformat (i.e., thet ype
attribute). This element describes the topology the dataset, and is different for the serial and parallel formats, which are
described as follows.

Serial XML File Formats. The VTKFi | e element contains one element whose hame corresponds to the type of dataset
the file describes. We refer to this as the dataset element, which is one of | mageData, RectilinearGid,
Struct uredGi d, Pol yDat a, or Unst ruct ur edG i d. The dataset element contains one or more Pi ece elements, each
describing a portion of the dataset. Together, the dataset element and Pi ece elements specify the entire dataset.

Each piece of adataset must specify the geometry (points and cells) of that piece along with the data associated with
each point or cell. Geometry is specified differently for each dataset type, but every piece of every dataset contains
Poi nt Dat a and Cel | Dat a elements specifying the datafor each point and cell in the piece.

The general structure for each serial dataset format is as follows:

» ImageData — Each | nageDat a piece specifies its extent within the dataset’s whole extent. The points and cells
" Thereis one casein which thefileis not avalid XML document. When the AppendedData section is not encoded as base64,

raw binary datais present that may violate the XML specification. Thisis not default behavior, and must be explicitly enabled
by the user.

XML File Formats 13

are described implicitly by the extent, origin, and spacing. Note that the origin and spacing are constant across all
pieces, so they are specified as attributes of the | mageDat a XML element as follows.

<VTKFi | e type="1mageData” ...>
<l nmageDat a Whol eExtent="x1 x2 y1 y2 z1 z2”
Origin="x0 y0 z0” Spaci ng="dx dy dz">
<Pi ece Extent="x1 x2 yl y2 z1 z2">
<Poi nt Dat a>. . . </ Poi nt Dat a>
<Cel | Dat a>. . . </ Cel | Dat a>
</ Pi ece>
</ | mageDat a>
</ VTKFi | e>

* RectilinearGrid — Each RectilinearGi d piece specifies its extent within the dataset’s whole extent. The
points are described by the Coor di nat es element. The cells are described implicitly by the extent.

<VTKFi | e type="RectilinearGid” ...>
<RectilinearGid Wol eExtent="x1 x2 yl y2 z1 z2">
<Pi ece Extent="x1 x2 yl y2 z1 z2">
<Poi nt Dat a>. . . </ Poi nt Dat a>
<Cel | Dat a>. .. </ Cel | Dat a>
<Coor di nat es>. . . </ Coor di nat es>
</ Pi ece>
</RectilinearGid>
</ VTKFi | e>

e SructuredGrid — Each St ruct ur edGri d piece specifiesits extent within the dataset’s whole extent. The points
are described explicitly by the Poi nt s element. The cells are described implicitly by the extent.

<VTKFi |l e type="StructuredGid’ ...>
<StructuredGid Wol eExtent="x1 x2 y1 y2 z1 z2">
<Pi ece Extent="x1 x2 yl y2 z1 z2">
<Poi nt Dat a>. . . </ Poi nt Dat a>
<Cel | Dat a>. . . </ Cel | Dat a>
<Poi nt s>. .. </ Poi nt s>
</ Pi ece>
</ StructuredGid>
</ VTKFi | e>

» PolyData — Each Pol yDat a piece specifies a set of points and cells independently from the other pieces. The
points are described explicitly by the Poi nt s element. The cells are described explicitly by the Vert s, Li nes,
Stri ps, and Pol ys elements.

<VTKFi | e type="Pol yData” ...>
<Pol yDat a>
<Pi ece Nunber O Poi nt s=" #" Nunber O Ver t s="#" Nunmber Of Li nes="#"

Nurber OF St ri ps="#" Nunber Of Pol ys="#">
<Poi nt Dat a>. . . </ Poi nt Dat a>
<Cel | Dat a>. . . </ Cel | Dat a>
<Poi nts>. .. </ Poi nts>
<Verts>...</Verts>
<Li nes>. .. </ Li nes>
<Strips> ..</Strips>
<Pol ys>. .. </ Pol ys>
</ Pi ece>

14 VTK 4.2 File Formats

</ Pol yDat a>
</ VTKFi | e>

e UnstructuredGrid — Each Unst ruct ur edG i d piece specifies a set of points and cells independently from the
other pieces. The points are described explicitly by the Poi nt s element. The cells are described explicitly by the
Cel | s element.

<VTKFi | e type="UnstructuredGid’ ...>
<Unst ructuredGi d>
<Pi ece Nunber O Poi nt s="#" Nunber O Cel | s="#" >
<Poi nt Dat a>. . . </ Poi nt Dat a>
<Cel | Dat a>. .. </ Cel | Dat a>
<Poi nts>. .. </ Poi nt s>
<Cells>. ..</Cells>
</ Pi ece>
</ UnstructuredGid>
</ VTKFi | e>

Every dataset describes the data associated with its points and cells with Poi nt Dat a and Cel | Dat a XML elements as
follows:

<Poi nt Dat a Scal ars="Tenperature” Vectors="Vel ocity”>

<Dat aArray Name="Velocity” .../>
<Dat aArray Nane="Tenperature” .../>
<Dat aArray Name="Pressure” .../>

</ Poi nt Dat a>

VTK alows an arbitrary number of data arrays to be associated with the points and cells of a dataset. Each data array is
described by a Dat aArray element which, among other things, gives each array a name. The following attributes of
Poi nt Dat a and Cel | Dat a are used to specify the active arrays by name:

Scal ar s — The name of the active scalars array, if any.
Vect or s — The name of the active vectors array, if any.
Nor mal s — The name of the active normals array, if any.
Tensor s — The name of the active tensors array, if any.
TCoor ds — The name of the active texture coordinates array, if any.
Some datasets describe their points and cells using different combinations of the following common elements:
* Points — The Poi nts element explicitly defines coordinates for each point individually. It contains one

Dat aAr r ay element describing an array with three components per value, each specifying the coordinates of one
point.

<Poi nt s>
<Dat aArray Nunber O Conponents="3" .../>
</ Poi nt s>

Coor di nat es — The Coor di nat es element defines point coordinates for an extent by specifying the ordinate
along each axis for each integer value in the extent’s range. It contains three Dat aAr r ay elements describing the
ordinates along the x-y-z axes, respectively.

<Coor di nat es>
<DataArray .../>
<DataArray .../>
<DataArray .../>

XML File Formats 15

</ Coor di nat es>

e Verts, Lines, Srips, and Polys — The Vert s, Li nes, Stri ps, and Pol ys elements define cells explicitly by
specifying point connectivity. Cell types are implicitly known by the type of element in which they are specified.
Each element containstwo Dat aAr r ay elements. Thefirst array specifies the point connectivity. All the cells’ point
lists are concatenated together. The second array specifies the offset into the connectivity array for the end of each

cell.

<Verts>
<Dat aArray type="Int 32" Name="connectivity” .../>
<Dat aArray type="Int32” Name="offsets” .../>

</ Verts>

« Cells— ThecCel | s element defines cells explicitly by specifying point connectivity and cell types. It contains three
Dat aAr ray elements. The first array specifies the point connectivity. All the cells' point lists are concatenated
together. The second array specifies the offset into the connectivity array for the end of each cell. The third array
specifies the type of each cell. (Note: the cell types are defined in Figure 2 and Figure 3.)

<Cel | s>
<Dat aArray type="Int 32" Name="connectivity” .../>
<Dat aArray type="Int 32" Nanme="offsets” .../>
<Dat aArray type="U nt8” Name="types” .../>

</ Cel | s>

All of the data and geometry specifications use Dat aAr r ay elementsto describe their actual content as follows:

« DataArray — TheDat aAr r ay element stores a sequence of values of one type. There may be one or more compo-
nents per value.

<Dat aArray type="Fl oat 32" Name="vectors” Number Of Conponent s="3"
f or mat =" appended” of fset="0"/>

<Dat aArray type="Fl oat 32" Nane="scal ars” format="binary”>
bAAAAAAAAAAAAI Al AAAAQAAAQEAAAI BA. .. </ Dat aArray>

<Dat aArray type="Int32” Nanme="offsets” format="ascii”>
10 20 30 ... </DataArray>

The attributes of the Dat aAr r ay elements are described as follows:

t ype — The data type of a single component of the array. Thisisone of I nt 8, Ul nt 8, | nt 16, Ul nt 16, I nt 32,
Ul nt 32, I nt64, Ul nt64, Float 32, Fl oat 64. Note: the 64-bit integer types are only supported if
VTK_USE_64BI T_I DS ison (a CMake variable—see “CMake” on page 8) or the platform is 64-bit.

Nane — The name of the array. Thisis usually abrief description of the data stored in the array.
Nurmber Of Conponent s — The number of components per value in the array.

format — The means by which the data values themselves are stored in the file. This is “ascii”, “binary”, or
“appended”.

of f set — If the format attribute is “appended”, this specifies the offset from the beginning of the appended data
section to the beginning of this array’s data.

Thef or mat attribute chooses among the three waysin which data values can be stored:

format="ascii” — Thedataare listed in ASCII directly inside the Dat aAr r ay element. Whitespace is used for
separation.

f or mat =" bi nary” — The data are encoded in base64 and listed contiguously inside the Dat aArr ay element.
Data may also be compressed before encoding in base64. The byte-order of the data matches that specified by

16 VTK 4.2 File Formats

thebyt e_or der attribute of the VTKFi | e element.

f or mat =" appended” — The data are stored in the appended data section. Since many Dat aAr r ay €l ements may
store their datain this section, the offset attribute is used to specify where each Dat aArray’ s data begins.
Thisformat isthe default used by VTK’swriters.

The appended data section is stored in an AppendedDat a element that is nested inside VTKFi | e after the
dataset element:
<VTKFile ...>

<AppendedDat a encodi ng="base64” >
_QWWEAAAAAAAAA, . .
</ AppendedDat a>
</ VTKFi | e>

The appended data section begins with the first character after the underscore inside the AppendedDat a ele-
ment. The underscore is not part of the data, but is always present. Data in this section is aways in binary
form, but can be compressed and/or base64 encoded. The byte-order of the data matches that specified by the
byt e_order attribute of the VTKFi | e element. Each Dat aArray’s data are stored contiguously and
appended immediately after the previous Dat aAr r ay’s data without a seperator. The Dat aArr ay’s of f set

attribute indicates the fil e position offset from the first character after the underscore to the beginning its data.

Parallel File Formats. The parallel file formats do not actually store any datain the file. Instead, the data are broken into
pieces, each of which is stored in a seria file of the same dataset type.

The VTKFi | e element contains one element whose hame corresponds to the type of dataset the file describes, but
with a “P’ prefix. We refer to this as the paralel dataset element, which is one of PimageData, PRectilinearGrid,
PStructuredGrid, PPolyData, or PUnstructuredGrid.

The parallel dataset element and those nested inside specify the types of the data arrays used to store points, point
data, and cell data (the type of arrays used to store cellsisfixed by VTK). The element does not actually contain any data,
but instead includes alist of Pi ece elements that specify the source from which to read each piece. Individual pieces are
stored in the corresponding seria file format. The parallel file needs to specify the type and structural information so that
readers can update pipeline information without actually reading the pieces’ files.

The general structure for each parallel dataset format is as follows:

« PImageData — The PI rageDat a element specifies the whole extent of the dataset and the number of ghost-levels
by which the extents in the individual pieces overlap. The Ori gi n and Spaci ng attributes implicitly specify the
point locations. Each Pi ece element describes the extent of one piece and the file in which it is stored.

<VTKFi | e type="Pl mageData” ...>
<Pl mageDat a Whol eExtent="x1 x2 yl y2 z1 z2"
Ghost Level ="#” Origi n="x0y0 z0” Spaci ng="dx dy dz">
<PPoi nt Dat a>. . . </ PPoi nt Dat a>
<PCel | Dat a>. . . </ PCel | Dat a>
<Pi ece Extent="x1 x2 yl1 y2 z1 z2” Source="inmageData0.vti”/>

</ Pl mageDat a>
</ VTKFi | e>

* PRectilinear Grid — ThePRect i | i near G i d element specifies the whole extent of the dataset and the number of
ghost-levels by which the extents in the individual pieces overlap. The PCoor di nat es element describes the type
of arrays used to specify the point ordinates along each axis, but does not actually contain the data. Each Pi ece ele-
ment describes the extent of one piece and thefilein whichiit is stored.

<VTKFi | e type="PRectilinearGid” ...>
<PRectilinearGid Wol eExtent="x1 x2 yl y2 z1 z2"
Chost Level =" #" >

XML File Formats 17

<PPoi nt Dat a>. . . </ PPoi nt Dat a>

<PCel | Dat a>. .. </ PCel | Dat a>

<PCoor di nat es>. . . </ PCoor di nat es>

<Pi ece Extent="x1 x2 yl y2 z1 z2”
Source="rectilinear&id0.vtr”/>

</ PRectilinearGid>
</ VTKFi | e>

e PSructuredGrid — The PSt r uct ur edG i d element specifies the whole extent of the dataset and the number of
ghost-levels by which the extents in the individual pieces overlap. The PPoi nt s element describes the type of array
used to specify the point locations, but does not actually contain the data. Each Pi ece element describes the extent
of one piece and thefilein which it is stored.

<VTKFi | e type="PStructuredGid” ...>
<PStructuredGid Wol eExtent="x1 x2 yl y2 z1 z2”
Ghost Level =" #">
<PPoi nt Dat a>. . . </ PPoi nt Dat a>
<PCel | Dat a>. . . </ PCel | Dat a>
<PPoi nt s>. .. </ PPoi nt s>
<Pi ece Extent="x1 x2 yl y2 z1 z2"
Sour ce="structuredGi dO. vts”/>

</ PStructuredGid>
</ VTKFi | e>

» PPolyData — The PPol yDat a element specifies the number of ghost-levels by which the individual pieces over-
lap. The PPoi nt s element describes the type of array used to specify the point locations, but does not actually con-
tain the data. Each Pi ece element specifies the file in which the pieceis stored.

<VTKFi | e type="PPol yData” ...>
<PPol yDat a Ghost Level ="#">
<PPoi nt Dat a>. . . </ PPoi nt Dat a>
<PCel | Dat a>. . . </ PCel | Dat a>
<PPoi nt s>. . . </ PPoi nt s>
<Pi ece Sour ce="pol ybat a0. vt p”/>

</ PPol yDat a>
</ VTKFi | e>

e PUnstructuredGrid — The PUnst ruct uredGri d element specifies the number of ghost-levels by which the
individual pieces overlap. The PPoi nt s element describes the type of array used to specify the point locations, but
does not actually contain the data. Each Pi ece element specifies the file in which the pieceis stored.

<VTKFi | e type="PUnstructuredGid” ...>
<PUnstructuredGid GhostLevel ="0">
<PPoi nt Dat a>. . . </ PPoi nt Dat a>
<PCel | Dat a>. .. </ PCel | Dat a>
<PPoi nt s>. . . </ PPoi nt s>
<Pi ece Source="unstructuredGi dO.vtu”/>

</ PUnstructuredGi d>
</ VTKFi | e>

18 VTK 4.2 File Formats

Every dataset uses PPointData and PCell Data el ements to describe the types of data arrays associated with its points and
cells.

« PPointData and PCellData — These elements simply mirror the Poi nt Dat a and Cel | Dat a elements from the
seria file formats. They contain PDat aAr r ay elements describing the data arrays, but without any actual data.

<PPoi nt Dat a Scal ar s=" Tenper ature” Vectors="Vel ocity”>

<PDat aArray Nanme="Velocity” .../>
<PDat aArray Nane="Tenperature” .../>
<PDat aArray Nanme="Pressure” .../>

</ PPoi nt Dat a>

For datasets that need specification of points, the following elements mirror their counterparts from the seria file format:

« PPoints — The PPoi nt s element contains one PDat aAr r ay element describing an array with three components.
The data array does not actually contain any data.

<PPoi nt s>
<PDat aArray Nunber O Conponents="3" .../>
</ PPoi nt s>

» PCoordinates — The PCoor di nat es element contains three PDat aAr r ay elements describing the arrays used to
specify ordinates along each axis. The data arrays do not actually contain any data.

<PCoor di nat es>
<PDat aArray .../>
<PDat aArray .../>
<PDat aArray .../>
</ PCoor di nat es>

All of the data and geometry specifications use PDat aAr r ay elements to describe the data array types:

e PDataArray — The PDat aArr ay element specifies the t ype, Nane, and optionally the Nunber Of Conponent s
attributes from the Dat aAr r ay element. It does not contain the actual data. This can be used by readersto create the
data array in their output without needing to read any real data, which is necessary for efficient pipeline updates in
some cases.

<PDat aArray type="Fl oat 32" Nane="vectors” Nunber Of Conponents="3"/>

Example. The following is a complete example specifying avt kPol yDat a representing a cube with some scalar data on
its points and faces.

<?xm version="1.0"7?>
<VTKFi | e type="PPol yDat a" version="0.1" byte_order="Littl eEndi an">
<PPol yDat a Chost Level ="0">
<PPoi nt Dat a Scal ars="ny_scal ars">
<PDat aArray type="Fl oat 32" Name="ny_scal ars"/>
</ PPoi nt Dat a>
<PCel | Dat a Scal ars="cel | _scal ars" Nornmal s="cel | _nor mal s">
<PDat aArray type="Int32" Nane="cell _scal ars"/>
<PDat aArray type="Fl oat 32" Nanme="cel | _normal s" Nunber O Conponent s="3"/ >
</ PCel | Dat a>
<PPoi nt s>
<PDat aArray type="Fl oat 32" Nunber Of Conponent s="3"/>
</ PPoi nt s>
<Pi ece Sour ce="pol yEXO. vt p"/>
</ PPol yDat a>

XML File Formats

19

</ VTKFi | e>

<?xm version="1.0"7?>
<VTKFi | e type="Pol yData" version="0.1" byte_order="Littl eEndi an">
<Pol yDat a>
<Pi ece Number O Poi nt s="8" Nunber Of Vert s="0" Number O Li nes="0"
Nurmber Of St ri ps="0" Nunmber O Pol ys="6">
<Poi nt s>
<Dat aArray type="Fl oat 32" Nunber & Conponent s="3" format="ascii">
000100110010001101111011
</ Dat aArray>
</ Poi nt s>
<Poi nt Dat a Scal ars="ny_scal ars">
<Dat aArray type="Fl oat 32" Nane="ny_scal ars" format="ascii">
01234567
</ Dat aAr r ay>
</ Poi nt Dat a>
<Cel | Data Scal ars="cel | _scal ars" Nornmal s="cel | _nornal s">
<Dat aArray type="Int32" Nanme="cell _scal ars" fornmat="ascii">
012345
</ Dat aAr r ay>
<Dat aArray type="Fl oat 32" Nane="cel | _normal s"
Nurber OF Conponent s="3" format="ascii">
00-10010-10010-100100
</ Dat aArr ay>
</ Cel | Dat a>
<Pol ys>
<Dat aArray type="Int32" Nanme="connectivity" format="ascii">
012345670154237604731265
</ Dat aArr ay>
<Dat aArray type="Int 32" Name="of fsets" format="ascii">
4 8 12 16 20 24
</ Dat aAr r ay>
</ Pol ys>
</ Pi ece>
</ Pol yDat a>
</ VTKFi | e>

