
Hybrid MPI-OpenMP Programming

Pierre-Francois.Lavallee@idris.fr
Philippe.Wautelet@idris.fr

CNRS — IDRIS

Version 2.2 — 15 June 2015

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 1 / 222

mailto:pierre-francois.lavallee@idris.fr
mailto:philippe.wautelet@idris.fr

Availability and Updating

This document is subject to regular updating. The most recent version is available on
the IDRIS Web server, section IDRIS Training:

http://www.idris.fr/eng

IDRIS
Institute for Development and Resources in Intensive Scientific Computing
Rue John Von Neumann
Bâtiment 506
BP 167
91403 ORSAY CEDEX
France
http://www.idris.fr

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 2 / 222

http://www.idris.fr/eng
http://www.idris.fr

Table of Contents I

1 Preamble

2 Introduction
Moore’s Law and Electric Consumption
The Memory Wall
As for Supercomputers
Amdahl’s Law
Gustafson-Barsis’ Law
Consequences for users
Evolution of Programming Methods
Presentation of the Machines Used

3 Advanced MPI
Introduction
History
Types of MPI Communications

Types of MPI Communications
Point-to-Point Send Modes
Collective Communications
One-Sided Communications

Computation-Communication Overlap
Derived Datatypes
Load Balancing
Process Mapping

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 3 / 222

Table of Contents II
4 Advanced OpenMP

Introduction
Limitations of OpenMP
The Fine-Grain (FG) Classical Approach
The Coarse-Grain Approach (CG)
CG vs. FG: additional costs of work-sharing
CG — Impact on the Code
CG — Low-Level Synchronizations
MPI/OpenMP-FG/OpenMP-CG Compared Performances
Conclusion

5 Hybrid programming
Definitions
Reasons for Hybrid Programming
Applications Which Can Benefit From Hybrid Programming
MPI and Multithreading
MPI and OpenMP
Adequacy to the Architecture: Memory Savings
Adequacy to the Architecture: the Network Aspect
Effects of a non-uniform architecture
Case Study: Multi-Zone NAS Parallel Benchmark
Case Study: Poisson3D

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 4 / 222

Table of Contents III

Case Study: HYDRO

6 Tools
SCALASCA
TAU
TotalView

7 Appendices
MPI

Factors Affecting MPI Performance
Ready Sends
Persistent Communications

Introduction to Code Optimisation
SBPR on older architectures

8 Hands-on Exercises
TP1 — MPI — HYDRO
TP2 — OpenMP — Dual-Dependency Nested Loops
TP3 — OpenMP — HYDRO
TP4 — Hybrid MPI and OpenMP — Global synchronization
TP5 — Hybrid MPI and OpenMP — HYDRO

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 5 / 222

Preamble

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 6 / 222

Presentation of the Training Course

The purpose of this course is to present MPI+OpenMP hybrid programming as well as
feedback from effective implementations of this model of parallelization on several
application codes.

The Introduction chapter endeavors to show, through technological evolutions of
architectures and parallelism constraints, how the transition to hybrid
parallelization is indispensible if we are to take advantage of the power of the
latest generation of massively parallel machines.

However, a hybrid code cannot perform well if the MPI and OpenMP parallel
implementations have not been previously optimized. This will be discussed in the
sections on Advanced MPI and Advanced OpenMP.
The Hybrid programming section is entirely dedicated to the MPI+OpenMP hybrid
approach. The benefits of hybrid programming are numerous:

• Memory savings
• Improved performances
• Better load balancing
• Coarser granularity, resulting in improved scalability
• Better code adequacy to the target architecture hardware specificities

However, as you will notice in the hands-on exercises, the implementation on a
real application requires a large time investment and a thorough familiarity with
MPI and OpenMP.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 7 / 222

Introduction

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 8 / 222

Moore’s Law

Statement

Moore’s law says that the number of transistors which can be placed on an integrated
circuit at a reasonable cost doubles every two years.

Electric consumption

Dissipated electric power = frequency3 (for a given technology).

Dissipated power per cm2 is limited by cooling.

Energy cost.

Moore’s law and electric consumption

Processor frequency is no longer increasing due to prohibitive electrical
consumption (maximum frequency limited to 3GHz since 2002-2004).

Number of transistors per chip continues to double every two years.

=> Number of cores per chip is increasing: The Intel Haswell-EP chips have up to 18
cores each and can run 36 threads simultaneously; the AMD Abu Dhabi chips have 16
cores.
=> Some architectures favor low-frequency cores, but in a very large number (IBM Blue
Gene).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 9 / 222

Moore’s Law

CC BY-SA 3.0, http://en.wikipedia.org/wiki/Moore%27s_law

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 10 / 222

http://en.wikipedia.org/wiki/Moore%27s_law

The Memory Wall

Causes

Throughputs towards the memory are not increasing as quickly as processor
computing power.

Latencies (access times) of the memory are decreasing very slowly.

Number of cores per memory module is increasing.

Consequences

The gap between the memory speed and the theoretical performance of the cores
is increasing.

Processors waste more and more cycles while waiting for data.

Increasingly difficult to maximally exploit the performance of processors.

Partial solutions

Addition of cache memories is essential.

Access parallelization via several memory banks as found on the vector
architectures (Intel Haswell: 4 channels and AMD: 4).

If the clock frequency of the cores stagnates or falls, the gap could be reduced.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 11 / 222

TOP500

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 12 / 222

TOP500

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 13 / 222

TOP500

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 14 / 222

As for Supercomputers

Technical evolution

The computing power of supercomputers is doubling every year (faster than
Moore’s Law, but electrical consumption is also increasing).

The number of cores is increasing rapidly (massively parallel and many-cores
architectures).

Emergence of hybrid architectures (examples: GPU or Xeon Phi and standard
processors).

Machine architecture is becoming more complex and the number of layers
increasing (processors/cores, memory access, network and I/O).

Memory per core is stagnating and beginning to decrease.

Performance per core is stagnating and much lower on some machines than on a
simple laptop (IBM Blue Gene).

Throughput towards the disk is increasing more slowly than the computing power.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 15 / 222

Amdahl’s Law

Statement

Amdahl’s Law predicts the theoretical maximum speedup obtained by parallelizing a
code ideally, for a given problem with a fixed size:

Sp(P) =
Ts

T//(P)
=

1
α+ (1−α)

P

<
1
α

(P →∞)

with Sp the speedup, Ts the execution time of the sequential code (monoprocessor), T//(P) the
execution time of the ideally parallelized code on P cores and α the non-parallelizable part of the
application.

Interpretation

Regardless of the number of cores, the speedup is always less than the inverse of the
percentage represented by the purely sequential fraction.
Example: If the purely sequential fraction of a code represents 20% of the execution
time of the sequential code, then regardless of the number of cores, we will have:
Sp < 1

20% = 5

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 16 / 222

Theoretical Maximum Speedup

Cores α (%)
0 0.01 0.1 1 2 5 10 25 50

10 10 9.99 9.91 9.17 8.47 6.90 5.26 3.08 1.82
100 100 99.0 91.0 50.2 33.6 16.8 9.17 3.88 1.98

1000 1000 909 500 91 47.7 19.6 9.91 3.99 1.998
10000 10000 5000 909 99.0 49.8 19.96 9.99 3.99 2

100000 100000 9091 990 99.9 49.9 19.99 10 4 2
∞ ∞ 10000 1000 100 50 20 10 4 2

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 17 / 222

The Gustafson-Barsis Law

Statement

The Gustafson-Barsis Law predicts the theoretical maximum speedup obtained by
parallelizing a code ideally for a problem of constant size per core, in supposing that
the execution time of the sequential fraction does not increase with the overall problem
size:

Sp (P) = P − α (P − 1)

with Sp the speedup, P the number of cores and α the non-parallelizable part of the application.

Interpretation

This law is more optimistic than Amdahl’s because it shows that the theoretical
speedup increases with the size of the problem being studied.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 18 / 222

Consequences for the Users

Consequences for the applications

It is necessary to exploit a large number of relatively slow cores.

Tendancy for individual core memory to decrease: Necessity to not waste memory.

Higher level of parallelism continually needed for the efficient usage of modern
architectures (regarding both computing power and memory size).

The I/O also becoming an increasingly current problem.

Consequences for the developers

The time has ended when you only needed to wait a while to obtain better
performance (i.e. stagnation of computing power per core).

Increased necessity to understand the hardware architecture.

More and more difficult to develop codes on your own (need for experts in HPC as
well as multi-disciplinary teams).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 19 / 222

Evolution of Programming Methods

Evolution of programming methods

MPI is still predominant and it will remain so for some time (a very large
community of users and the majority of current applications).

The MPI-OpenMP hybrid approach is being used more and seems to be the
preferred approach for supercomputers.

GPU programming use increasing, but the technique is still immature.

Other forms of hybrid programming also being tested (MPI + GPU, ...), generally
with MPI as ingredient.

New parallel programming languages are appearing (UPC, Coarray- Fortran,
PGAS languages, X10, Chapel, ...), but they are in experimental phases (at
variable levels of maturity). Some are very promising; it remains to be seen
whether they will be used in real applications.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 20 / 222

IDRIS Configuration

Turing: IBM Blue Gene/Q

Ada: IBM x3750

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 21 / 222

IDRIS Configuration

Important numbers

Turing: 6 racks Blue Gene/Q:
• 6,144 nodes
• 98,304 cores
• 393,216 threads
• 96 TiB
• 1.258 Tflop/s
• 636 kW (106 kW/ rack)

Ada: 15 racks IBM x3750M4:
• 332 compute nodes and 4 pre-/post-processing nodes
• 10,624 Intel SandyBridge cores at 2.7 GHz
• 46 TiB
• 230 Tflop/s
• 366 kW

2.2 PiB on shared disks between BG/Q and Intel (50 GiB/s peak)

1 MW for the whole configuration (not counting the cooling system)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 22 / 222

IDRIS Configuration

CNRS/IDRIS Infrastructure informatique – Janvier 2015

(RM – 01/02/2015)

Configuration IBM
X3850X5 - Adapp

- Installation :
septembre 2012

- 128 cœurs Westmere
 à 2,67 Ghz
 (4 nœuds de
 32 cœurs chacun)
- 4 To de mémoire

Configuration IBM
 Blue Gene/Q - Turing

- Installation : sept. 2012
 65 536 cœurs
- extension : novembre 2014
 32 768 cœurs
- total de la configuration :
 98 304 cœurs PowerPC

 A2 à 1,6 Ghz
 (6 144 nœuds 16 cœurs)
- 6 racks Blue Gene/Q
- 96 Tio de mémoire
- 1,258 Tflop/s crête

stockage partagé

2,2 Po

serveur
de calcul parallèle

Serveur
de pre/post traitement

Configuration IBM
X3750M4 - Ada

- Installation : sept. 2012
- 10 624 cœurs SandyBridge
 à 2,7 GHz
 (332 nœuds de
 32 cœurs chacun)
- 49 To de mémoire
- 233 Tflop/s

serveur
de calcul scalaire10

G

Robot Oracle / STK
SL8500

- Installation : juin 2010
 . capacité 10000 cassettes
 . 6 lecteurs T10KB
 . 6 lecteurs LTO5
 . 10 lecteurs LTO6

Robot (stockage sur cassettes) Cache disque

stockage

2 Po

Configuration IBM
serveur archivage - Ergon

- Installation : juin 2014
- cluster IBM de 13 nœuds
- 2 baies de disques
- Réseaux 10Gb et IB
- GPFS et TSM HSM

serveur
archivage

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 23 / 222

Blue Gene/Q Architecture

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 24 / 222

Advanced MPI

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 25 / 222

Table of Contents I

3 Advanced MPI
Introduction
History
Types of MPI Communications

Types of MPI Communications
Point-to-Point Send Modes
Collective Communications
One-Sided Communications

Computation-Communication Overlap
Derived Datatypes
Load Balancing
Process Mapping

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 26 / 222

Presentation of MPI

Presentation of MPI

Parallelization paradigm for distributed
memory architectures based on the use
of a portable library.

MPI is based on a communications
approach of passing messages between
processes.
MPI provides different types of
communications:

• Point-to-point
• Collective
• One-sided

MPI also provides the following
functionalities (non-exhaustive list):

• Execution environment
• Derived datatypes
• Communicators and topologies
• Dynamic process management
• Parallel I/O
• Profiling interface

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 27 / 222

Presentation of MPI

Limitations of MPI

Final speedup limited by the purely sequential fraction of the code (Amdhal’s law).

Scalability is limited due to the additional costs related to the MPI library and load
balancing management.

Certain types of collective communications become more and more
time-consuming as the number of processes increases (e.g. MPI_Alltoall).

No distinction made between processes running in shared or distributed memory;
yet, this has a major impact on the communications performance. Most
implementations take this into account, but the MPI standard does not provide the
information to know if the process communications are within a node or between
nodes.

There are few means provided in the standard to match the MPI processes with
the hardware (e.g. process mapping). However, this often can be done through
means which are not in the standard.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 28 / 222

History

Up to now

Version 1.0 : in June 1994, the MPI forum, with the participation of about forty
organizations, came to the definition of a set of subroutines concerning the MPI
message passing library.

Version 1.1 : June 1995, with only minor changes.

Version 1.2 : in 1997, with minor changes for a better consistency of the naming
of some subroutines.

Version 1.3 : September 2008, with clarifications in MPI 1.2, according to
clarifications themselves made by MPI 2.1

Version 2.0 : released in July 1997, this version brought deliberately
non-integrated, essential additions in MPI 1.0 (process dynamic management,
one-sided communications, parallel I/O, etc.).

Version 2.1 : June 2008, merge of versions 1.3 and 2.0 with some clarifications in
MPI 2.0 but without any changes.

Version 2.2 : September 2009, with only "small" additions.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 29 / 222

History

MPI 3.0

Changes and important additions to version 2.2.

Published in September 2012.
Principal changes:

• Non-blocking collective communications
• Implementation revision for one-sided communications
• Fortran (2003-2008) bindings
• C++ interfaces removed
• Interfacing of external tools (for debugging and performance measurements)
• etc.

See http://meetings.mpi-forum.org/MPI_3.0_main_page.php
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 30 / 222

http://meetings.mpi-forum.org/MPI_3.0_main_page.php
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki

State of Current Implementations

State of current implementations

Implementation Corresponding standard
MPICH Standard 3.0 since version 3.0 (December 2012)
OpenMPI Standard 2.1 (version 1.6.5, since 1.3.3)

Standard 3.0 (1.8 versions)
IBM Blue Gene/Q Standard 2.2 (without dynamic process management;

based on MPICH2-1.5)
Intel MPI Standard 3.0 (since 5.0)
IBM PEMPI Standard 2.2
BullxMPI Standard 2.1 (version 1.2.8.2)
Cray Standard 3.0

Comment: Most implementations include part of the 3.0 standard.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 31 / 222

Types of MPI Communications

Paradigms of MPI communications

MPI provides several approaches to achieve communications between processes:

Blocking or non-blocking point-to-point

Persistent point-to-point (see appendices)

Blocking collective

Non-blocking collective (from MPI 3.0)

One-sided (RMA)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 32 / 222

Point-to-Point Send Modes

Point-to-Point Send Modes

Mode Blocking Non-blocking
Standard send MPI_Send MPI_Isend
Synchronous send MPI_Ssend MPI_Issend
Buffered send MPI_Bsend MPI_Ibsend
Ready send MPI_Rsend MPI_Irsend
Receive MPI_Recv MPI_Irecv

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 33 / 222

Point-to-Point Send Modes

Key terms

It is important to thoroughly understand the definition of certain MPI terms.

Blocking call: A call is blocking if the memory space used for the communication
can be re-used immediately after the call exits. The data that were or will be sent
are the data that were in this space at the moment of the call. If it is a receive, the
data must have already been received in this space (if the return code is
MPI_SUCCESS).

Non-blocking call: A non-blocking call returns very quickly, but it does not
authorize the immediate re-use of the memory space used in the communication.
It is necessary to make sure that the communication is fully completed (with
MPI_Wait, for example) before using it again.

Synchronous send: A synchronous send involves a synchronization between the
concerned processes. There can be no communication before the two processes
are ready to communicate. A send cannot start until its receive is posted.

Buffered send: A buffered send involves the copying of data into an intermediate
memory space. In this case, there is no coupling between the two processes of
communication. The return of this type of send, therefore, does not mean that the
receive has occurred.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 34 / 222

Synchronous Sends

Synchronous sends

A synchronous send is made by calling the subroutine MPI_Ssend or MPI_Issend.

Rendezvous protocol

The rendezvous protocol is
generally the one used for
synchronous sends (depending on
implementation used). The return
receipt is optional.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 35 / 222

Synchronous Sends

Advantages

Few resources used (no buffer)

Rapid if the receiver is ready (no copying into a buffer)

Guaranteed reception through synchronization

Disadvantages

Waiting time if the receiver is not there/not ready

Risk of deadlock

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 36 / 222

Buffered Sends

Buffered sends

A buffered send is made by calling the MPI_Bsend or MPI_Ibsend subroutine. The
buffers must be managed manually (with calls to MPI_Buffer_attach and
MPI_Buffer_detach). Their allocation must take into account the message header
size (by adding the constant MPI_BSEND_OVERHEAD for each message instance).

Protocol with user buffer on the sender side

This approach is the one generally
used for the MPI_Bsend or
MPI_Ibsend. In this approach,
the buffer is located on the sender
side and is managed explicitly by
the application. A buffer managed
by MPI can exist on the receiver
side; numerous variants are
possible. The return receipt is
optional.

<

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 37 / 222

Buffered Sends

Eager protocol

The eager protocol is often used
for standard mode sends of
small-size messages. Eager can
also be used by MPI_Bsend
for small messages (depending on
implementation used) through
bypassing the user buffer on the
sender side. In this approach, the
buffer is on the receiver side. The
return receipt is optional.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 38 / 222

Buffered Sends

Advantages

No need to wait for the receiver (copying into a buffer).

No risk of deadlock.

Disadvantages

More resources used (memory occupation by buffers with risk of saturation).

The send buffers used in the MPI_Bsend or MPI_Ibsend calls have to be
managed manually (often tricky to choose a suitable size).

A little bit slower than the synchronous sends (when the receiver is ready).

No guarantee of a good reception (send-receive decoupling).

Risk of wasted memory space if the buffers are too oversized.

The application will crash if the buffer is too small.

There are often hidden buffers managed by the MPI implementation on the sender
side and/or on the receiver side (and consuming memory resources).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 39 / 222

Standard Sends

Standard sends

A standard send is made by calling the subroutine MPI_Send or MPI_Isend. In most
implementations, this mode switches from buffered to synchronous when the message
size increases.

Advantages

Often the most efficient (because it was maximally adapted by the manufacturer).

The most portable for dependably good performances.

Disadvantages

Little control over the mode actually used (but usually accessible via environment
variables).

Risk of deadlock depending on mode used.

Behavior can vary according to the architecture and the problem size.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 40 / 222

Point-to-Point Send Modes

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 41 / 222

Point-to-Point Send Modes

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 42 / 222

Point-to-Point Send Modes

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 43 / 222

Collective Communications

Definitions and general characteristics

Collective communications allow carrying out communications involving several
processes.

Collective communications can be highly optimized and some can also have
reduction operations; they may be simulated by a series of point-to-point
operations but this is neither efficient nor advantageous.

A collective communication involves all the processes of the communicator used.

Up to MPI 2.2, only blocking calls were included (i.e. a process does not return
before its participation in the communication is completed). The MPI 3.0 standard
has added non-blocking calls for collective communications.

Collective communications do not include or require global synchronization
(except for MPI_Barrier).

They never interfere with point-to-point communications.

It is nearly always better to choose collective rather than point-to-point
communications.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 44 / 222

Collective Communications

Categories

Collective communications can be divided into three categories:

Global synchronizations (MPI_Barrier); not to be used unless necessary (rare)
Transfers/data exchanges

• data broadcasting (global with MPI_Bcast, selective with MPI_Scatter)
• data gathering (MPI_Gather and MPI_Allgather)
• global exchange (MPI_Alltoall)

Reduction operations (MPI_Reduce, MPI_Allreduce, MPI_Reduce_scatter
and MPI_Scan)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 45 / 222

Collective Communications

Advantages (in comparison to point-to-point communications)

Highly optimised.

Several point-to-point communications in only one operation.

Disadvantages (in comparison to point-to-point communications)

Can hide very important transfer volumes from the programmer (for example, an
MPI_Alltoall with 1024 processes involves more than 1 million point-to-point
messages).

There are no non-blocking calls (no longer the case in the MPI 3.0 standard).

Involves all the communicator processes. Consequently, it is necessary to create
sub-communicators if all the processes are not participating in the collective
communication.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 46 / 222

Collective vs Point-to-Point

Global broadcast simulated with point-to-point communications (loop of MPI_Send on
one process and MPI_Recv on the others) versus a call to MPI_Bcast.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 47 / 222

Collective Communications

Definition of global synchronization

A global synchronization (or barrier) is an operation in which, at a given moment, all the
involved processes will be in the same call. A process arriving in this call cannot exit
until all the other processes have also entered the call. However, they are not required
to exit the call at the same time.

Are collective communications synchronizing?

Collective communications don’t
involve a global synchronization
(except MPI_Barrier) and don’t
require one. Implementations are
free to put global synchronization
into any of the collective calls; in
these cases, the developers need
to ensure that their applications
are working.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 48 / 222

One-Sided Communications

Definition

One-sided communications (Remote
Memory Access or RMA) consists of
accessing the memory of a distant process
in read or write without the distant process
having to manage this access explicitly.
The target process does not intervene
during the transfer.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 49 / 222

One-Sided Communications

General approach

Creation of a memory window with MPI_Win_create to authorize RMA transfers
in this zone.

Remote access in read or write by calling MPI_Put, MPI_Get or
MPI_Accumulate.

Free the memory window with MPI_Win_free.

Synchronization methods

In order to ensure the correct functioning of the application, it is necessary to execute
some synchronizations. Three methods are available:

Active target communication with global synchronization (MPI_Win_fence)

Active target communication with synchronization by pair (MPI_Win_Start and
MPI_Win_Complete for the origin process; MPI_Win_Post and MPI_Win_Wait
for the target process)

Passive target communication without target intervention (MPI_Win_lock and
MPI_Win_unlock)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 50 / 222

One-Sided Communications

Advantages

Certain algorithms can be written more easily.

More efficient than point-to-point communications on certain machines (use of
specialized hardware such as a DMA engine, coprocessor, specialized memory,
...).

The implementation can group together several operations.

Disadvantages

Synchronization management is tricky.

Complexity and high risk of error.

For passive target synchronizations, it is mandatory to allocate the memory with
MPI_Alloc_mem which does not respect the Fortran standard (Cray pointers
cannot be used with certain compilers).

Less efficient than point-to-point communications on certain machines.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 51 / 222

One-Sided Communications

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 52 / 222

One-Sided Communications

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 53 / 222

Computation-Communication Overlap

Presentation

The overlap of communications by computations is a method which allows the
communication operations to be carried out in the background while the program
continues to run.

It is thus possible, if the hardware and software architectures permit it, to hide all
or part of the communications costs.

The computation-communication overlap can be seen as an additional level of
parallelism.

This approach is used in MPI by the use of non-blocking subroutines (i.e.
MPI_Isend, MPI_Irecv and MPI_Wait).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 54 / 222

Computation-Communication Overlap

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 55 / 222

Computation-Communication Overlap

Advantages

Possibility of hiding all or part of communications costs (if the architecture allows
it).

No risk of deadlock.

Disadvantages

Greater additional costs (several calls for one single send or receive; management
of requests).

More complexity and more complicated maintenance.

Less efficient on some machines (for example, with transfer starting only at the call
MPI_Wait).

Risk of performance loss on the computational kernels; (for example, differentiated
management between the area near the border of a domain and the interior area
resulting in less efficient use of memory caches).

Limited to point-to-point communications (was extended to collective
communications in MPI 3.0.)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 56 / 222

Computation-Communication Overlap

Usage

The message send is made in two steps:

Initiate the send or the receive by a call to MPI_Isend or MPI_Irecv (or one of
their variants).

Wait until the end of the local contribution by calling MPI_Wait (or one of its
variants).

The communications will overlap with all the operations that occur between these two
steps. Access to data being received is not permitted before the end of the MPI_Wait.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 57 / 222

Computation-Communication Overlap

Example
do i=1,niter
! Initialize communications
call MPI_Irecv(data_ext, sz,MPI_REAL,dest,tag,comm, &

req(1),ierr)
call MPI_Isend(data_bound,sz,MPI_REAL,dest,tag,comm, &

req(2),ierr)

! Compute the interior domain (data_ext and data_bound
! not used) while communications are taking place
call compute_interior_domain(data_int)

! Wait for the end of communications
call MPI_Waitall(2,req,MPI_STATUSES_IGNORE,ierr)

! Compute the exterior domain
call compute_exterior_domain(data_int,data_bound,data_ext)

end do

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 58 / 222

Computation-Communication Overlap

Overlap level on different machines

Machine Level
Blue Gene/Q PAMID_THREAD_MULTIPLE=0 32%
Blue Gene/Q PAMID_THREAD_MULTIPLE=1 100%
Ada 33% extranode

0% intranode
NEC SX-8 10%
CURIE (in 2012) 0%

Measurements done by overlapping a computational kernel with a communication
kernel having the same execution times and by using different communication patterns
(intra/extra-nodes, by pairs, random processes, ...). Depending on the communication
pattern, the results can be totally different.

An overlap of 0% means that the total execution time is twice the time of a
computational (or communication) kernel.
An overlap of 100% means that the total execution time equals the time of a
computational (or communication) kernel.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 59 / 222

Derived Datatypes

Presentation

Derived datatypes can represent data structures of any degree of complexity.

An important level of abstraction can be reached while hiding the underlying
complexity.

Can be used in all MPI communications, and also in the I/O.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 60 / 222

Existing Derived Datatypes

Existing derived datatypes

Datatype Multiple Non Any kind Hetero-
data contiguous of spacing geneous

Predefined datatypes
MPI_Type_contiguous 3

MPI_Type_vector 3 3

MPI_Type_indexed 3 3 3

MPI_Type_struct 3 3 3 3

MPI_Type_vector and MPI_Type_indexed give the displacements in whole
multiples of the base type.

The MPI_Type_create_hvector and MPI_Type_create_hindexed variants give
the displacements in bytes.

There are also two other derived datatypes: MPI_Type_create_subarray to
describe subarrays and MPI_Type_create_darray for arrays distributed on a group
of processes.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 61 / 222

Derived Datatypes: Advantages

Advantages

Readability

High level of abstraction

Non-contiguous datatypes possible

Heterogeneous datatypes possible

Message grouping

Also usable in the I/O

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 62 / 222

Derived Datatypes: Disadvantages

Disadvantages

Can be difficult to implement

Heterogeneous datatypes which can be difficult to write

High level of abstraction => potential loss of program mastery

Often lower performances

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 63 / 222

Derived Datatypes: Alternatives

Manual copies in intermediate structures

Manual data management with making copies in intermediate structures:

Often the most efficient

Involves additional memory-to-memory copies

Uses more memory resources

Manual management of memory space

Does not make use of possible communication sub-systems (scatter-gather
hardware) or specialized parallel filesystems (e.g. PVFS)

Separate messages

Data send in separate messages.

Warning: If numerous messages, very bad performances. To be absolutely avoided!

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 64 / 222

Derived Datatypes: Alternatives

MPI_Pack/MPI_Unpack

Use of MPI_Pack/MPI_Unpack subroutines:

Often not efficient

Same disadvantages as manual management with copying into intermediate
structures

Possibility of receiving or preparing a message in several parts

Can be used with derived datatypes

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 65 / 222

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 66 / 222

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 67 / 222

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 68 / 222

Load Balancing

Definitions

A parallel MPI application has a perfect load balance when all the processes take
the same time between two synchronizations (explicit or not).

Varying work quantities for the different processes lead to load imbalance resulting
in waiting times for the fastest processses, desynchronizations, and lessened
scalability.

The slowest process is the limiting factor.

Another form of imbalance is the memory imbalance between processes. This can be problematic
on machines having little memory per node.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 69 / 222

Load Balancing

Some causes of imbalance

Poor data partitioning from the conception

Adaptative mesh refinement (AMR)

Iterative processes with a different number of iterations according to the variables,
cells, ...

Sources external to the application: OS jitter, non-dedicated resources, ...

Some tips for (re)balancing

Dynamic balancing during execution with exchanges of cells between the
processes (use of the Hilbert space-filling curve, ...)

Master-slave approach

Use of partitioning libraries (PT-SCOTCH, ParMETIS, ...)

Many sub-domains per process

MPI-OpenMP hybrid approach

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 70 / 222

Process Mapping

Definitions

Every MPI process has a rank in the MPI_COMM_WORLD communicator (varying
from 0 to Nprocesses-1).

Every MPI process is placed on a machine node in an immovable way; there are
no migrations between nodes during execution.

On many supercomputers, each process is also placed immovably on a given core
(this is called binding or affinity); there are no migrations between cores during
execution.

The mapping corresponds to the relation between the rank of the process and its
position on the machine.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 71 / 222

Process Mapping

Importance

The higher the number of processes, the more communications there are, and the
greater the average distance between each process (higher number of memory and
network links to cross).

The latency increases with the distance.

The network or memory contention increases if messages cross several links.

A bad mapping can have a huge impact. The ideal is to communicate only between
close neighbors.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 72 / 222

Process Mapping

Software adaptation

Use MPI_Dims_create and MPI_Cart_create and leave as much freedom as
possible to MPI: Do not impose dimensions; authorize the renumbering of
processes.

Know your application and its modes/patterns of communications.

Communicate with close neighbors.

Divide up the meshes to best match the machine characteristics.

Mapping Tools

The use of numactl enables choosing the affinity on many Linux systems.

The hwloc library provides access to extensive information on the machine node
topology and it can determine the binding.

On Blue Gene/Q, the process mapping is done by using the --mapping option of
runjob.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 73 / 222

Example: The Blue Gene/P Topology

The Blue Gene/P Topology

For point-to-point and some collective
communications, the network topology is a 3D
torus.

Each compute node is connected to its 6
neighbors with bidirectional network links.

The ideal is to communicate only between
close neighbors.

Cartesian Topologies

MPI can optimally place the 3D and 4D Cartesian toplogies on the 3D torus (4D if in
DUAL or VN mode).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 74 / 222

Example of Scalability on Blue Gene/P

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 75 / 222

Advanced OpenMP

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 76 / 222

Summary I

4 Advanced OpenMP
Introduction
Limitations of OpenMP
The Fine-Grain (FG) Classical Approach
The Coarse-Grain Approach (CG)
CG vs. FG: additional costs of work-sharing
CG — Impact on the Code
CG — Low-Level Synchronizations
MPI/OpenMP-FG/OpenMP-CG Compared Performances
Conclusion

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 77 / 222

OpenMP - Overview

Presentation of OpenMP

Parallelization paradigm for shared memory architecture based on directives to be
inserted in the (C, C++, Fortran) code.

OpenMP consists of a set of directives, a library of functions and a group of
environment variables.

OpenMP is an integral part of all recent Fortran/C/C++ compilers.
OpenMP can manage:

• Creation of threads
• Work-sharing between these threads
• Synchronization (explicit or implicit) between all the threads
• Data-sharing attribute of variables (private or shared)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 78 / 222

OpenMP - Overview

Schematic Drawing

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 79 / 222

Limitations of OpenMP

Limitations of OpenMP (1)

The parallel code scalability is physically limited by the size of the shared memory
node on which it is running.

In practice, the cumulated memory bandwidth inside an SMP node can even
further limit the number of cores which can be used efficiently. Contentions due to
memory bandwidth limitation can often be bypassed by optimizing the use of
caches.

Pay attention to the additional costs implicit in OpenMP during the creation of
threads, steming from the synchronization between threads (implicit or explicit) or
from work-sharing (for example, in the processing of parallel loops).

Other additional costs which are directly linked to the target machine architecture
can also affect performances, such as "false sharing" on shared caches, or the
Non-Uniform Memory Access (NUMA) aspect.

The binding of threads on the machine’s physical cores is the responsibility of the
system (accessible to the developer through the use of some libraries). The
binding can have a very important impact on the performance.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 80 / 222

Limitations of OpenMP

Limitations of OpenMP (2)

OpenMP does not manage the data locality aspect; this poses a real problem on
highly NUMA-based architecture and prevents using any accelerator-based
architecture.

OpenMP is not suitable for dynamic problems (i.e. when the workload fluctuates
rapidly during the execution).

As for any code parallelization, the final speedup will be limited by the purely
sequential fraction of a code (Amdahl’s law).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 81 / 222

The Fine-Grain (FG) Classical Approach

Definition

Fine-Grain (FG) Open MP: Use of OpenMP directives to share the work between
threads, in particular on parallel loops, by using the DO directive.

Advantages

Simplicity of implementation; the parallelization does not alter the code; only one
code version to manage for both the sequential and parallel versions.

An incremental approach to code parallelization is possible.

If we use the OpenMP work-sharing directives (WORKSHARE, DO, SECTION), then
implicit synchronizations managed by OpenMP will enormously simplify the
programming (i.e. parallel loop with reduction).

On the parallel loops, dynamic load balancing can be done through clause options
SCHEDULE (DYNAMIC, GUIDED).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 82 / 222

The Fine-Grain (FG) Classical Approach

Disadvantages

The additional costs due to work-sharing and the creation/management of threads
can become considerable, particularly when there is low granularity in the parallel
code.

Some algorithms or loop nests cannot be directly parallelizable because they
require manual synchronizations, done at a "lower level" than simple barriers,
mutual exclusions or single execution.

In practice, we observe a limited scalability of codes (always inferior to the same
code parallelized with MPI), even when they have been optimized well. The lower
the granularity of the code, the more this phenomenon is accentuated.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 83 / 222

The Coarse-Grain Approach (CG)

Definition

Coarse-Grain (CG): Code encapsulation in only one parallel region and work
distribution on the threads done manually.

Advantages

For low-granularity codes, the additional costs of work-sharing are much less than
with the fine-grain approach.

Very good scalability when the code is predisposed to it (comparable and often
even better than that obtained by parallelizing the code with MPI).

We will see later on that this is the approach which gives the best performances
on an SMP node.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 84 / 222

The Coarse-Grain (CG) Approach

Disadvantages

Approach which is very intrusive in the code; it is no longer possible to have only
one unique version of the code to manage.

The incremental approach to code parallelization is no longer possible.

Synchronizations (global or at thread level) are ENTIRELY the programmer’s
responsability.

Work-sharing and load balancing are also the programmer’s responsability.

Finally, the implementation turns out to be at least as complex as a parallelization
with MPI.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 85 / 222

OpenMP Coarse-Grain: Work-Sharing

Example of a parallel loop

Let us consider the simple parallel loop below, repeated nbIter = 106 times.

do iter=1,nbIter
do i=1,n

B(i) = B(i) * a + iter
enddo

enddo

Fine-grain parallelization of the inner loop is very simple: Work-sharing is done by
using the OpenMP DO directive. Through the SCHEDULE(RUNTIME)clause, the
distribution mode for the processing of iteration blocks by threads will be chosen just
before the execution. Dynamic load balancing can be done with the DYNAMIC or
GUIDED modes, but be careful of the potential additional costs in the execution!

do iter=1,nbIter
!$OMP DO SCHEDULE(RUNTIME)
do i=1,n

B(i) = B(i) * a + iter
enddo

enddo

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 86 / 222

OpenMP Coarse-Grain: Work-Sharing

Example of a parallel loop

Coarse-grain parallelization version 1 — with static load balancing, every thread
executes non-consecutive iterations:

!$ myOMPRank = OMP_GET_THREAD_NUM()
!$ nbOMPThreads = OMP_GET_NUM_THREADS()
do iter=1,nbIter

do i=1+myOMPRank,n,nbOMPThreads
B(i) = B(i) * a + iter

enddo
enddo

This is actually equivalent to a parallel loop with a STATIC schedule and a chunk equal
to 1 (i.e. only one iteration).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 87 / 222

OpenMP Coarse-Grain: Work-Sharing

Example of a parallel loop (continued)

Coarse-Grain parallelization version 2 — without load balancing, each thread
processes a block of consecutive iterations:

!$ myOMPRank = OMP_GET_THREAD_NUM()
!$ nbOMPThreads = OMP_GET_NUM_THREADS()
nbnLoc = n/nbOMPThreads
iDeb = 1+myOMPRank*nbnLoc
iFin = iDeb+nbnLoc-1
if (myOMPRank==nbOMPThreads-1) iFin = n
do iter=1,nbIter

do i=iDeb,iFin
B(i) = B(i) * a + iter

enddo
enddo

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 88 / 222

OpenMP Coarse-Grain: Work-Sharing

Example of a parallel loop (continued)

Coarse-grain parallelization version 3 — with static load balancing, every thread
processes a block of consecutive iterations:

!$ myOMPRank = OMP_GET_THREAD_NUM()
!$ nbOMPThreads = OMP_GET_NUM_THREADS()
iDeb = 1+(myOMPRank*n)/nbOMPThreads
iFin = ((myOMPRank+1)*n)/nbOMPThreads
do iter=1,nbIter

do i=iDeb,iFin
B(i) = B(i) * a + iter

enddo
enddo

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 89 / 222

Coarse-Grain versus Fine-Grain

Coarse-Grain versus fine-grain : Additional costs due to work-sharing

Mono 1 core 2 cores 4 cores 8 cores 16 cores 24 cores 32 cores
FG 2.75 2.65 5.44 7.26 14.75 65.97 187.2 458.4
CG V1 2.75 6.04 13.84 17.06 21.53 46.96 57.0 58.7
CG V2 2.75 6.19 3.10 1.54 0.79 0.40 0.29 0.26
CG V3 2.75 6.19 3.09 1.54 0.77 0.39 0.27 0.19

Conclusions

The fine-grain parallel loop version gives catastrophic results; the additional costs
are so important that the elapsed times increase explosively as the number of
threads increases. The results are even worse if we use the DYNAMIC distribution
mode of iterations on threads because if we do not specify the chunk size, it
creates, by default, as many chunks as iterations!

The two (and only) versions which are scalable are the CG V2 and V3, the impact
of load balancing appearing only beyond 24 threads. The performances are
excellent, considering the granularity of the parallelized loop (speedup of 14.5 on
32 threads).

The coarse-grain approach limits the impact of additional costs, which permits an
optimal scalability of the parallelized codes.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 90 / 222

Coarse-Grain Approach

The coarse-grain approach: Impact on the code

Contrary to the fine-grain approach, which intrudes very little in the code (only a
few additions of OpenMP directives), the coarse-grain approach requires much
code rewriting, the necessity of introducing new variables, etc.

A simple classical example: How to parallelize a loop with a reduction in a
coarse-grain version? We can no longer use the REDUCTION clause of the DO
directive. It is necessary to do it manually, ...

Every thread will calculate a local reduction in a private variable, and then it will
accumulate the local reductions in the same shared variable, but one thread at a
time!

For the FG version, only one OpenMP directive (with 2 modified or added lines) is
used. For the CG version, it is necessary to introduce or modify no fewer than 14
code lines and use 4 directives or function calls of the OpenMP library!!!

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 91 / 222

π Computation

Example of the π computation, sequential version
program pi
! __
! Objective: Calculation of || by the method of rectangles (midpoint)
!
! / 1
! | 4 __
! | ---------- dx = ||
! | 1 + x**2
! / 0

implicit none
integer, parameter :: n=30000000
real(kind=8) :: f, x, a, h, Pi_calc
integer :: i

! Integrand
f(a) = 4.0_8 / (1.0_8 + a*a)

! Length of the integration interval
h = 1.0_8 / real(n,kind=8)

! Pi calculation
Pi_calc = 0.0_8
do i = 1, n
x = h * (real(i,kind=8) - 0.5_8)
Pi_calc = Pi_calc + f(x)

end do
Pi_calc = h * Pi_calc

end program pi

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 92 / 222

π Computation

Example of π computation, OpenMP fine-grain parallel version
program pi
! __
! Purpose: to calculate || by the method of rectangles (midpoint)
!
! / 1
! | 4 __
! | ---------- dx = ||
! | 1 + x**2
! / 0

implicit none
integer, parameter :: n=30000000
real(kind=8) :: f, x, a, h, Pi_calc
integer :: i

! Integrand
f(a) = 4.0_8 / (1.0_8 + a*a)

! Length of the integration interval
h = 1.0_8 / real(n,kind=8)

! Pi calculation
Pi_calc = 0.0_8
!$OMP PARALLEL DO PRIVATE(x) REDUCTION(+:Pi_calc)
do i = 1, n
x = h * (real(i,kind=8) - 0.5_8)
Pi_calc = Pi_calc + f(x)

end do
!$OMP END PARALLEL DO
Pi_calc = h * Pi_calc

end program pi

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 93 / 222

π Computation

Example of π computation, OpenMP coarse-grain parallel version
program pi
!$ use OMP_LIB
implicit none
integer, parameter :: n=30000000
real(kind=8) :: f, x, a, h, Pi_calc, Pi_calc_loc
integer :: i, iDeb, iFin, myOMPRank, nbOMPThreads
! Integrand
f(a) = 4.0_8 / (1.0_8 + a*a)

! Initialisation of myOMPRank and nbOMPThreads
myOMPRank=0
nbOMPThreads=1
! Length of the integration interval
h = 1.0_8 / real(n,kind=8)
! Pi calculation
Pi_calc = 0.0_8
Pi_calc_loc = 0.0_8
!$OMP PARALLEL PRIVATE(x,myOMPRank,iDeb,iFin) FIRSTPRIVATE(Pi_calc_loc)
!$ myOMPRank = OMP_GET_THREAD_NUM()
!$ nbOMPThreads = OMP_GET_NUM_THREADS()
iDeb = 1+(myOMPRank*n)/nbOMPThreads
iFin = ((myOMPRank+1)*n)/nbOMPThreads
do i = iDeb, iFin
x = h * (real(i,kind=8) - 0.5_8)
Pi_calc_loc = Pi_calc_loc + f(x)

end do
!$OMP ATOMIC
Pi_calc = Pi_calc + Pi_calc_loc
!$OMP END PARALLEL
Pi_calc = h * Pi_calc

end program pi

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 94 / 222

Low-Level Synchronizations

Low-level synchronizations between two or several threads

The synchronizations provided by OpenMP (BARRIER, SINGLE, ATOMIC, etc) are
not suitable to coarse-grain parallelization which requires low-level (manual)
synchronizations.

Unfortunately, nothing is available for this purpose in OpenMP. The programmer,
therefore, needs to emulate these functionalities by using the shared variables and
the FLUSH directive to exchange information between two or several other threads.

Some algorithms are not parallelizable without resorting to this type of
synchronization.

It is complicated to code, a source of errors, and it alters the code, but it is
indispensable, ...

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 95 / 222

CG — Low-Level Synchronizations

The OpenMP FLUSH directive

Reminder: The OpenMP FLUSH directive can update all the memory hierarchy of
a thread associated with the shared variables listed in argument. If there is no
argument at the FLUSH command, all the shared variables which are visible by the
thread are updated (very expensive!). More precisely, on the thread which makes
the call to the FLUSH:

• The shared variables listed in argument, and having been updated since the last
FLUSH, will have their value copied in shared memory,

• The shared variables listed in argument, and not updated since the last FLUSH, will
have their cache line invalidated. In this way, every new reference to this variable will
correspond to a read in the shared memory of the variable value.

Let us assume that an algorithm composed of several parts (T1,T2, . . . ,Tn) has
the following dependencies:

∀i = 1, . . . , n − 1 Ti+1 cannot start to run until Ti is finished.

Low-level synchronization between two threads, necessary to manage these
dependencies, can be implemented as in the code following.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 96 / 222

Management of Dependencies

Example of dependencies managed "by hand"

program ring1
!$ use OMP_LIB
implicit none
integer :: rank,nb_threads,synch=0
!$OMP PARALLEL PRIVATE(rank,nb_threads)
rank=OMP_GET_THREAD_NUM()
nb_threads=OMP_GET_NUM_THREADS()
do
!$OMP FLUSH(synch)
if(synch==mod(rank-1+nb_threads,nb_threads)) &
exit

end do
print *,"Rank:",rank,";synch:",synch
synch=rank
!$OMP FLUSH(synch)

!$OMP END PARALLEL
end program ring1

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 97 / 222

Management of Dependencies

An easy trap - example
program ring2-wrong
!$ use OMP_LIB
integer :: rank,nb_threads,synch=0,counter=0
!$OMP PARALLEL PRIVATE(rank,nb_threads)

rank=OMP_GET_THREAD_NUM()
nb_threads=OMP_GET_NUM_THREADS()
if (rank == 0) then ; do

!$OMP FLUSH(synch)
if(synch == nb_threads-1) exit

end do
else ; do

!$OMP FLUSH(synch)
if(synch == rank-1) exit

end do
end if
counter=counter+1
print *,"Rank:",rank,";synch:",synch,";counter:",counter
synch=rank
!$OMP FLUSH(synch)

!$OMP END PARALLEL
print *,"Counter = ",counter
end program ring2-wrong

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 98 / 222

Management of Dependencies

A difficult and vicious trap - example
program ring3-wrong
!$ use OMP_LIB
integer :: rank,nb_threads,synch=0,counter=0
!$OMP PARALLEL PRIVATE(rank,nb_threads)

rank=OMP_GET_THREAD_NUM(); nb_threads=OMP_GET_NUM_THREADS()
if (rank == 0) then ; do

!$OMP FLUSH(synch)
if(synch == nb_threads-1) exit

end do
else ; do

!$OMP FLUSH(synch)
if(synch == rank-1) exit

end do
end if
print *,"Rank:",rank,";synch:",synch,"
!$OMP FLUSH(counter)
counter=counter+1
!$OMP FLUSH(counter)
synch=rank
!$OMP FLUSH(synch)

!$OMP END PARALLEL
print *,"Counter = ",counter
end program ring3-wrong

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 99 / 222

Low-Level Synchronisations

Commentaries on the previous codes

In ring2-wrong, we did not flush the shared counter variable before and after
incrementing it. The end result can potentially be wrong.

In ring3-wrong, the compiler can inverse the lines,

counter=counter+1
!$OMP FLUSH(counter)

and the lines,

synch=rank
!$OMP FLUSH(synch),

releasing the following thread before the counter variable has been incremented.
Here also, the end result can be potentially wrong.

To solve this problem, it is necessary to flush the two variables counter and synch
just after the incrementation of the counter variable, thereby imposing an order to
the compiler.

The correct code is found below.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 100 / 222

Management of Dependencies

The correct code...
program ring4
!$ use OMP_LIB
integer :: rank,nb_threads,synch=0,counter=0
!$OMP PARALLEL PRIVATE(rank,nb_threads)

rank=OMP_GET_THREAD_NUM()
nb_threads=OMP_GET_NUM_THREADS()
if (rank == 0) then ; do

!$OMP FLUSH(synch)
if(synch == nb_threads-1) exit

end do
else ; do

!$OMP FLUSH(synch)
if(synch == rank-1) exit

end do
end if
print *,"Rank:",rank,";synch:",synch,"
!$OMP FLUSH(counter)
counter=counter+1
!$OMP FLUSH(counter,synch)
synch=rank
!$OMP FLUSH(synch)

!$OMP END PARALLEL
print *,"Counter = ",counter
end program ring4

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 101 / 222

Nested Loops with Double Dependencies

Problem description and analysis

Let us consider the following code:
! Nested loops with double dependencies
do j = 2, ny

do i = 2, nx
V(i,j) =(V(i,j) + V(i-1,j) + V(i,j-1))/3

end do
end do

This is a classical problem in parallelism found, for example, in the NAS Parallel
Benchmarks (LU application).

Because of backward dependency in i and in j, neither the loop in i, nor the loop in
j, is parallel. (Every iteration in i or j depends on the previous iteration.)

Parallelizing the loop in i or the loop in j with the OpenMP PARALLEL DO directive
would give wrong results.

Nevertheless, it is still possible to expose parallelism of these nested loops by
doing the calculations in an order that does not break the dependencies.

There are at least two methods to parallelize these nested loops: the hyperplane
algorithm; and software pipelining.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 102 / 222

Hyperplane Algorithm

How to expose parallelism?

The principle is simple: We are
going to work on the hyperplanes
of the equation i + j = cst , each
corresponding to a matrix
diagonal.

On a given hyperplane, the
elements are updated
independently (of each other), so
these operations can be carried
out in parallel.

However, there is a dependence
relation between the different
hyperplanes: The elements of Hn

hyperplane cannot be updated
until the element updating of Hn−1

hyperplane has finished.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 103 / 222

Hyperplan Algorithm(2)

Code rewriting

A code rewriting of the hyperplane algorithm is, therefore, required; with an outer
loop on the hyperplanes (non-parallel because of dependencies between
hyperplanes), and with an inner parallel loop on the elements belonging to the
hyperplane which permits updating in any order.

The code can be rewritten with the following form:
do h = 1,nb_hyperplane ! Non // loop, dependencies between hyperplanes

call calcul(INDI,INDJ,h) ! compute i and j indices for the h hyperplane
do e = 1,nb_element_hyperplane ! loop on the elements of the h hyperplane

i = INDI(e)
j = INDJ(e)
V(i,j) =(V(i,j) + V(i-1,j) + V(i,j-1))/3 ! Update of V(i,j)

enddo
enddo

Some complementary remarks

Once the code is rewritten, the parallelization is very simple because the inner
loop is already parallel. We haven’t had any need to resort to low-level
synchronizations to implement the hyperplane algorithm.

The performances obtained, unfortunately, are not optimal; the main reason being
the poor use of caches due to the diagonal access (non-contiguous in memory) of
the V matrix elements.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 104 / 222

Software Pipelining Algorithm

How to expose parallelism?

The principle is simple: We are going to parallelize the innermost loop by block,
first by playing with the iterations of the outer loop, followed by manually
synchronizing the threads between each other, always being careful not to break
the dependencies.

We cut the matrix into horizontal slices and attribute each slice to a thread.

The algorithm dependencies impose the following: Thread 0 processes an
iteration of the outer loop j which must have a value superior to thread 1 (one),
which itself must have a value superior to that of thread 2, and so on. If we do not
respect this condition, we will break the dependencies!

Specifically, when a thread has finished processing the j th column of its domain, it
must, before continuing, verify that the preceding thread has already finished
processing the next column (j + 1th). If this is not the case, it is necessary for it to
wait until this condition has been fulfilled.

To implement this algorithm, it is necessary to synchronize the threads constantly,
in pairs, and to not release a thread until the aforementioned condition has been
fulfilled.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 105 / 222

Software Pipelining Algorithm (2)

The dependencies...

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 106 / 222

Software Pipelining Algorithm (3)

Implementation

Finally, the implementation of this method can be done in the following way:
myOMPRank = ...
nbOMPThrds = ...
call calcul_borne(iDeb,iFin)
do j= 2,n

! Thread is blocked (except 0) as long
! as the previous has not finished
! the treatment of the j+1 iteration
call sync(myOMPRank,j)
! // loop distributed on the threads
do i = iDeb,iFin

! Update of V(i,j)
V(i,j) =(V(i,j) + V(i-1,j) + V(i,j-1))/3

enddo
enddo

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 107 / 222

MPI/OpenMP-FG/OpenMP-CG Performances

Characteristics of the code and target machine

The performance tests were carried out with the hydrodynamic code HYDRO (the
one used in the hands-on exercises)

The target machine is a shared memory node of Vargas (IBM SP6, 32 cores per
node)
We compared three parallelized versions of HYDRO:

1 a parallelized version with MPI, 2D domain decomposition, use of derived datatypes,
and no computation-communication overlap;

2 a parallelized version with fine-grain OpenMP, STATIC scheduling; and
3 a parallelized version with coarse-grain OpenMP, 2D domain decomposition, and

thread-to-thread synchronization to manage the dependencies.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 108 / 222

MPI/OpenMP-FG/OpenMP-CG Performances

Characteristics of data sets used

We used three data sets, each having the same total size (i.e., the same total number
of points), but having different distributions with two (x and y) directions:

1 Elongated domain in the y direction: nx = 1000 and ny = 100000,
2 Square domain: nx = ny = 10000,
3 Elongated domain in the x direction: nx = 100000 and ny = 1000.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 109 / 222

MPI / OpenMP-FG / OpenMP-CG Performances

Results for the domain nx = 100000, ny = 1000

Time (s) Mono 1 core 2 cores 4 cores 8 cores 16 cores 24 cores 32 co.
mpi2D 361.4 383.8 170.9 91.4 42.0 23.0 14.4 13.6
ompfg 361.4 371.6 193.2 98.4 51.0 32.2 24.6 20.2
ompcg 361.4 350.4 177.3 85.3 43.8 23.4 16.9 12.0

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 110 / 222

MPI/OpenMP-FG/OpenMP-CG Performances

Results for nx = 1000, ny = 100000

Time (s) Mono 1 core 2 cores 4 cores 8 cores 16 cores 24 cores 32 co.
mpi2D 1347.2 1310.6 638.3 318.7 106.1 51.0 26.9 22.1
ompfg 1347.2 879.0 461.0 217.9 116.2 98.0 70.5 54.8
ompcg 1347.2 868.0 444.1 222.7 83.7 32.1 21.7 14.3

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 111 / 222

MPI/OpenMP-FG/OpenMP-CG Performances

Results for nx = 10000, ny = 10000

Time (s) Mono 1 core 2 cores 4 cores 8 cores 16 cores 24 cores 32 co.
mpi2D 449.9 456.0 223.7 112.2 56.8 26.1 17.8 14.9
ompfg 449.9 471.9 283.4 140.5 71.8 42.9 30.7 23.9
ompcg 449.9 455.7 230.8 115.9 51.1 26.9 17.1 13.2

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 112 / 222

Analysis of Results (1)

OpenMP fine-grain version

Although we are working on identically-sized domains, the performances obtained
on a single core can vary by as much as triple. The reason can be found in
whether the caches are used well or not.

Up to 4 cores, the three versions give more or less similar performances
regardless of the data set. Beyond 4 cores, the OpenMP FG version suffers from a
problem of degraded scalability compared to the MPI and OpenMP CG versions.

Consequently, except for when using a limited number of cores, the OpenMP FG
version is always largely dominated by the MPI or OpenMP CG versions, even if it
is scalable in a regular but limited way, up to 32 cores.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 113 / 222

Analysis of Results (2)

MPI and OpenMP coarse-grain versions

Up to 24 cores, the MPI and OpenMP CG versions have comparable scalabilities,
both of which are perfect and sometimes even super-linear. (The re-use of caches
progressively improves as the size of the local sub-domains decreases.)

Beyond 24 cores, the MPI version seems to slow down, while the OpenMP CG
version continues being perfectly scalable.

Over 32 cores, it is always the OpenMP CG version which gives the best results.

Nevertheless, it is important to note that the MPI version can still be optimized; for
example, implementing computation-communication overlap could enable it to be
scalable beyond 24 cores.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 114 / 222

Conclusions

The growing use of shared memory machines, as well as the increase in the
number of cores available inside a node, require us to reconsider the way in which
we program applications.

If we are seeking maximal performance inside a node, it is the OpenMP
Coarse-Grain approach that must be used. This requires extensive means (time
and technical competence); it is at least as complicated to implement as an MPI
version. Debugging is particularly complex. This approach is reserved for
specialists who skillfully master parallelism and its traps.

The usage simplicity and implementation rapidity of an OpenMP Fine-Grain
version are its main advantages. On condition of being coded well (minimization of
synchronization barriers and parallel regions), the performances, according to the
type of algorithm (especially according to the granularity), can go from medium to
relatively good. Debugging, with this version also, remains particularly complex.
This approach, however, can be used by everyone.

MPI obtains good performances on a shared memory node but the OpenMP CG
version outclasses it in terms of scalability. Nevertheless, it can be optimized by
implementing computation-communication overlap. In any case, it remains
indispensable when it is necessary to surpass the use of a single node.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 115 / 222

Hybrid programming

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 116 / 222

Summary I

5 Hybrid programming
Definitions
Reasons for Hybrid Programming
Applications Which Can Benefit From Hybrid Programming
MPI and Multithreading
MPI and OpenMP
Adequacy to the Architecture: Memory Savings
Adequacy to the Architecture: the Network Aspect
Effects of a non-uniform architecture
Case Study: Multi-Zone NAS Parallel Benchmark
Case Study: Poisson3D
Case Study: HYDRO

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 117 / 222

Definitions

Definitions

Hybrid parallel programming consists of mixing several parallel programming
paradigms in order to benefit from the advantages of the different approaches.

In general, MPI is used for communication between processes, and another
paradigm (OpenMP, pthreads, PGAS languages, UPC, ...) is used inside each
process.

In this training course, we will talk exclusively about the use of MPI with OpenMP.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 118 / 222

Hybrid Programming

Schematic drawing

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 119 / 222

Reasons for Hybrid Programming

Advantages of hybrid programming (1)

Improved scalability through a reduction in both the number of MPI messages and
the number of processes involved in collective communications (MPI_Alltoall
is not very scalable), and by improved load balancing.

More adequate to the architecture of modern supercomputers (interconnected
shared-memory nodes, NUMA machines, ...), whereas MPI used alone is a flat
approach.

Optimization of the total memory consumption, thanks to the OpenMP
shared-memory approach; less replicated data in the MPI processes; and less
memory used by the MPI library itself.

Reduction of the footprint memory when the size of certain data structures
depends directly on the number of MPI processes.

Can go beyond certain algorithmic limitations (for example, the maximum
decomposition in one direction).

Enhanced performance of certain algorithms by reducing the number of MPI
processes (fewer domains = a better preconditioner, provided that the
contributions of other domains are dropped).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 120 / 222

Reasons for Hybrid Programming

Advantages of hybrid programming (2)

Fewer simultaneous accesses in I/O and a larger average record size; fewer and
more suitably-sized requests cause less load on the meta-data servers, and
potentially significant time savings on a massively parallel application.

There are fewer files to manage if each process writes its own file(s) (an approach
strongly advised against, however, in a framework of massive parallelism).

Certain architectures require launching several threads (or processes) per core in
order to efficiently use the computational units.

An MPI parallel code is a succession of computation and communication phases.
The granularity of a code is defined as the average ratio between two successive
computation and communication phases. The greater the granularity of a code,
the more scalable it is. Compared to the pure MPI approach, the hybrid approach
significantly increases the granularity and consequently, the scalability of codes.

Disadvantages of hybrid programming

Complexity and higher level of expertise.

Necessity of having good MPI and OpenMP performances (Amdahl’s law applies
separately to the two approaches).

Total gains in performance are not guaranteed (extra additional costs, ...).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 121 / 222

Applications Which Can Benefit From Hybrid Programming

Applications which can benefit from hybrid programming

Codes having limited MPI scalability (due to using calls to MPI_Alltoall, for
example)

Codes requiring dynamic load balancing

Codes limited by memory size and having a large amount of replicated data in the
MPI process or having data structures which depend on the number of processes
for their dimension

Inefficient local MPI implementation library for intra-node communications

Many massively parallel applications

Codes working on problems of fine-grain parallelism or on a mixture of fine-grain
and coarse-grain parallelism

Codes limited by the scalability of their algorithms

...

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 122 / 222

MPI and Multithreading

Thread support in MPI

The MPI standard provides a particular subroutine to replace MPI_Init when the
MPI application is multithreaded: This subroutine is MPI_Init_thread.

The standard does not require a minimum level of thread support. Certain
architectures and/or implementations, therefore, could end up not having any
support for multithreaded applications.

The ranks identify only the processes; the threads cannot be specified in the
communications.

Any thread can make MPI calls (depending on the level of support).

Any thread of a given MPI process can receive a message sent to this process
(depending on the level of support).

Blocking calls will only block the thread concerned.

The call to MPI_Finalize must be made by the same thread that called
MPI_Init_thread and only when all the threads of the process have finished
their MPI calls.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 123 / 222

MPI and Multithreading

MPI_Init_thread

int MPI_Init_thread(int *argc, char *((*argv)[]),
int required, int *provided)

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

The level of support requested is provided in the variable "required". The level actually
obtained (which could be less than what was requested) is returned in "provided".

MPI_THREAD_SINGLE: Only one thread per process can run.

MPI_THREAD_FUNNELED: The application can launch several threads per
process, but only the main thread (the one which made the call to
MPI_Init_thread) can make MPI calls.

MPI_THREAD_SERIALIZED: All the threads can make MPI calls, but only one at
a time.

MPI_THREAD_MULTIPLE: Entirely multithreaded without restrictions.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 124 / 222

MPI and Multithreading

Other MPI subroutines

MPI_Query_thread returns the support level of the calling process:

int MPI_Query_thread(int *provided)
MPI_QUERY_THREAD(PROVIDED, IERROR)

MPI_Is_thread_main gives the return, whether it is the main thread calling or not.
(Important if the support level is MPI_THREAD_FUNNELED and also for the call
MPI_Finalize.)

int MPI_Is_thread_main(int *flag)
MPI_IS_THREAD_MAIN(FLAG, IERROR)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 125 / 222

MPI and Multithreading

Restrictions on MPI collective calls (1)

In MPI_THREAD_MULTIPLE mode, the user must ensure that collective operations
using the same communicator, memory window, or file handle are correctly ordered
among the different threads.

It is forbidden, therefore, to have several threads per process making calls with the
same communicator without first ensuring that these calls are made in the same
order on each of the processes.

We cannot have at any given time, therefore, more than one thread making a
collective call with the same communicator (whether the calls are different or not).

For example, if several threads make a call to MPI_Barrier with
MPI_COMM_WORLD, the application may hang (this was easily verified on Babel
and Vargas).

2 threads, each one calling an MPI_Allreduce (with the same reduction
operation or not), could obtain false results.

2 different collective calls cannot be used either (for example, an MPI_Reduce
and an MPI_Bcast).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 126 / 222

MPI and Multithreading

Restrictions on MPI collective calls (2)

There are several possible ways to avoid these difficulties:

Impose the order of the calls by synchronizing the different threads interior to each
MPI process.

Use different communicators for each collective call.

Only make collective calls on one single thread per process.

Comment: In MPI_THREAD_SERIALIZED mode, the restrictions should not exist
because the user must ensure that at any given moment, a maximum of only one
thread per process is involved in an MPI call (collective or not). Caution: The same
order of calls in all the processes must nevertheless be respected.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 127 / 222

MPI and OpenMP

Implications of the different support levels

The multithreading support level provided by the MPI library imposes certain
conditions and restrictions on the use of OpenMP:

MPI_THREAD_SINGLE: OpenMP cannot be used.

MPI_THREAD_FUNNELED: MPI calls must be made either outside of the OpenMP
parallel regions, in the OpenMP master regions, or in protected zones, and by
calling MPI_Is_thread_main.

MPI_THREAD_SERIALIZED: In the OpenMP parallel regions, MPI calls must be
made in critical sections (when necessary, to ensure that only one MPI call is
made at a time)

MPI_THREAD_MULTIPLE: No restriction.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 128 / 222

MPI and OpenMP

State of current implementations

Implementation Level Supported Remarks
MPICH MPI_THREAD_MULTIPLE
OpenMPI MPI_THREAD_MULTIPLE Must be compiled with

–enable-mpi-threads
IBM BlueGene/Q MPI_THREAD_MULTIPLE
IBM PEMPI MPI_THREAD_MULTIPLE
BullxMPI MPI_THREAD_FUNNELED
Intel - MPI MPI_THREAD_MULTIPLE Use -mt_mpi
SGI - MPT MPI_THREAD_MULTIPLE Use -lmpi_mt

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 129 / 222

Hybrid Programming – Memory Savings

Why memory savings?

Hybrid programming allows optimizing code adequacy to the target architecture
(generally composed of shared-memory nodes [SMP] linked by an interconnection
network). The advantage of shared memory inside a node is that it is not
necessary to duplicate data in order to exchange them. Every thread can access
(read /write) SHARED data.

The ghost or halo cells, introduced to simplify MPI code programming using a
domain decomposition, are no longer needed within the SMP node. Only the
ghost cells associated with the inter-node communications are necessary.

The memory savings associated with the elimination of intra-node ghost cells can
be considerable. The amount saved largely depends on the order of the method
used, the type of domain (2D or 3D), the domain decomposition (in one or multiple
dimensions), and on the number of cores in the SMP node.

The footprint memory of the system buffers associated with MPI is not negligible
and increases with the number of processes. For example, for an Infiniband
network with 65,000 MPI processes, the footprint memory of system buffers
reaches 300 MB per process, almost 20 TB in total!

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 130 / 222

Hybrid Programming – Memory Savings

Example: 2D domain, decomposition in both directions

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 131 / 222

Hybrid Programming – Memory Savings

Extrapolation on a 3D domain

What are the relative memory savings obtained by using a hybrid version (Instead
of a flat MPI version) of a 3D code parallelized by a technique of domain
decomposition in its three dimensions? Let us try to calculate this in function of
numerical method (h) and the number SMP node cores (c).
We will assume the following hypotheses:

• The order of the numerical method h varies from 1 to 10.
• The number of cores c of the SMP node varies from 1 to 128.
• To size the problem, we will assume that we have access to 64 GB of shared-memory

on the node.

The simulation result is presented in the following slide. The isovalues 10%, 20%
and 50% are represented by the white lines on the isosurface.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 132 / 222

Hybrid Programming – Memory Savings

Extrapolation on a 3D domain

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 133 / 222

Hybrid Programming – Memory Savings

Memory savings on some real application codes (1)

Source: « Mixed Mode Programming on HECToR », A. Stathopoulos, August 22,
2010, MSc in High Performance Computing, EPCC

Target machine: HECToR CRAY XT6.
1856 Compute Nodes (CN), each one composed of two processors AMD 2.1GHz,
12 cores sharing 32 GB of memory, for a total of 44544 cores, 58 GB of memory
and a peak performance of 373 Tflop/s.

Results (the memory per node is expressed in MB):

Code Pure MPI version Hybrid version Memory
MPI prc Mem./ Node MPI x threads Mem./Node savings

CPMD 1152 2400 48 x 24 500 4.8
BQCD 3072 3500 128 x 24 1500 2.3
SP-MZ 4608 2800 192 x 24 1200 2.3
IRS 2592 2600 108 x 24 900 2.9
Jacobi 2304 3850 96 x 24 2100 1.8

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 134 / 222

Hybrid Programming – Memory Savings

Memory savings on some real application codes (2)

Source: « Performance evaluations of gyrokinetic Eulerian code GT5D on
massively parallel multi-core platforms », Y. Idomura and S. Jolliet, SC11

Executions on 4096 cores

Supercomputers used: Fujitsu BX900 with Nehalem-EP processors at 2.93 GHz
(8 cores and 24 GiB per node)

All sizes given in TiB

System Pure MPI 4 threads/process 8 threads/process
Total (code+sys.) Total (code+sys.) Gain Total (code+sys.) Gain

BX900 5.40 (3.40+2.00) 2.83 (2.39+0.44) 1.9 2.32 (2.16+0.16) 2.3

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 135 / 222

Hybrid programming – Memory Savings

Conclusion

The memory savings aspect is too often forgotten when we talk about hybrid
programming.

The potential savings, however, are very significant and could be exploited to
increase the size of the problems to be simulated!
There are several reasons why the differential between the MPI and hybrid
approaches will enlarge at an increasingly rapid rate for the next generation of
machines:

1 Multiplication in the total number of cores.
2 Rapid mutiplication in the number of available cores within a node as well as the

general use of hyperthreading or SMT (the possibility of running multiple threads
simultaneously on one core).

3 General use of high-order numerical methods (gross computing costs becoming less,
thanks particularly to hardware accelerators).

The benefits will make the transition to hybrid programming almost mandatory...

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 136 / 222

Optimal Use of the Interconnection Network

How to optimise the use of the inter-node interconnection network

The hybrid approach aims to use the available hardware resources the most
effectively (shared memory, memory hierarchy, communication network).

One of the difficulties of hybrid programming is to generate a sufficient number of
communication flows in order to make the best use of the inter-node
communication network.

In fact, the throughputs of inter-node interconnection networks of recent
architectures are high (bidirectional throughput peak of 8 GB/s on Vargas, for
example) and one data flow alone cannot saturate it; only a fraction of the network
is really used, the rest being wasted.

IDRIS has developed a small benchmark SBPR (Saturation Bande Passante
Réseau [Network Bandwidth Saturation]), a simple parallel ping-pong test aimed
at determining the number of concurrent flows required to saturate the network.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 137 / 222

Optimal Use of the Interconnection Network

MPI_THREAD_FUNNELED version of SBPR

MPI_THREAD_FUNNELED approach:

We increase the network bandwidth actually used by increasing the number of
MPI processes per node (i.e. we generate as many parallel communication flows
as there are MPI processes per node).

The basic solution, which consists of using as many OpenMP threads as there are
cores inside a node and as many MPI processes as the number of nodes, is not
generally the most efficient: The resources are not being used optimally, in
particular the network.

We look for the optimal ratio value between the number of MPI processes per
node and the number of OpenMP threads per MPI process. The greater the ratio,
the better the inter-node network flow rate, but the granularity is not as good. A
compromise has to be found.

The number of MPI processes (i.e. the data flow to be managed simultaneously)
necessary to saturate the network varies greatly from one architecture to another.

This value could be a good indicator of the optimal ratio of the number of MPI
processes/number of OpenMP threads per node of a hybrid application.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 138 / 222

Optimal Use of the Interconnection Network

MPI_THREAD_FUNNELED version of SBPR: Example on a 4-Core (BG/P) SMP Node

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 139 / 222

Optimal Use of the Interconnection Network

MPI_THREAD_FUNNELED version of SBPR: Example on a 4-Core (BG/P) SMP Node

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 140 / 222

Optimal Use of the Interconnection Network

MPI_THREAD_MULTIPLE version of SBPR

MPI_THREAD_MULTIPLE approach:

We increase the network bandwidth actually used by increasing the number of
OpenMP threads which participate in the communications.

We have a single MPI process per node. We look for the minimum number of
communication threads required to saturate the network.

MPI_THREAD_MULTIPLE version of SBPR: Example on a 4-Core (BG/P) SMP Node

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 141 / 222

Optimal Use of the Interconnection Network

MPI_THREAD_MULTIPLE version of SBPR: Example on a 4-Core (BG/P) SMP Node

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 142 / 222

Optimal Use of the Interconnection Network

SBPR: Results on Ada

2 links in //, FDR10 Infiniband, peak throughput 10 GB/s.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 143 / 222

Optimal Use of the Interconnection Network

SBPR: Results on Ada

2 links in //, FDR10 Infiniband, peak throughput 10 GB/s.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 144 / 222

Optimal Use of the Interconnection Network

SBPR: Results on Ada

With a single data flow, we use only a fraction of the inter-node network bandwidth.

In MPI_THREAD_FUNNELED mode, saturation of Ada inter-node network links
begins with only 2 parallel flows (i.e. 2 MPI processes per node).

In MPI_THREAD_MULTIPLE mode, saturation of Ada inter-node network links
appears with 16 parallel flows (i.e. 16 threads per node participating in
communications).

The 2 MPI_THREAD_FUNNELED and MPI_THREAD_MULTIPLE approaches are
well suited to Ada with an advantage for the first method.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 145 / 222

Optimal Use of the Interconnection Network

SBPR: Results on Turing

2 links in // (E direction of 5D torus), peak throughput 4 GB/s.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 146 / 222

Optimal Use of the Interconnection Network

SBPR: Results on Turing

2 links in // (E direction of 5D torus), peak throughput 4 GB/s.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 147 / 222

Optimal Use of the Interconnection Network

SBPR: Results on Turing

The use of only one data flow (i.e. one single communication thread or MPI
process per node) is sufficient to totally saturate the interconnection network
between two neighboring nodes.

The performances of the MPI_THREAD_MULTIPLE and MPI_THREAD_FUNNELED
versions are comparable on Turing.

The throughput reached is about 3.5 GB/s, which is around 85% of the peak
inter-node network bandwidth (for the E direction of the 5D torus).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 148 / 222

Effects of a non-uniform architecture

Non-uniform architecture

Most modern supercomputers have a non-uniform architecture :

NUMA, Non Uniform Memory Access with the memory modules attached to
different sockets inside a given node.

Memory caches shared or not between different cores or groups of cores.

Network cards connected to some sockets.

Non-uniform network (for example with several layers of network switches) => see
also process mapping.

Effects

Performance of MPI communications are not the same for each core even inside a
node.

Process mapping is important inside and outside nodes.

Performance problems and optimisation are hard due to the complexity of the
modern architectures.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 149 / 222

Non-uniform architecture on Ada

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 150 / 222

Ping Pong on Ada

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 151 / 222

Presentation of the Benchmark

Description of the Multi-Zone NAS Parallel Benchmark

Developed by NASA, the Multi-Zone NAS Parallel Benchmark is a group of
performance test programs for parallel machines.

These codes use algorithms close to those used in certain CFD codes.

The multi-zone version provides three different applications with eight different
problem sizes.

This benchmark is used frequently.

The sources are available at the address:
http://www.nas.nasa.gov/Resources/Software/software.html.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 152 / 222

http://www.nas.nasa.gov/Resources/Software/software.html

Presentation of the Benchmark

Selected Application: BT-MZ

BT-MZ: block tridiagonal solver.

The zone sizes vary widely: poor load balancing.

The hybrid approach should improve the situation.

Selected Application: SP-MZ

SP-MZ: scalar pentadiagonal solver.

All the zone sizes are identical: perfect load balancing.

The hybrid approach should not bring any improvement.

Selected Problem Sizes

Class D: 1024 zones (and therefore limited to 1024 MPI processes), 1632 x 1216
x 34 grid points (13 GiB)

Class E: 4096 zones (and therefore limited to 4096 MPI processes), 4224 x 3456
x 92 grid points (250 GiB)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 153 / 222

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 154 / 222

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 155 / 222

Analysis of Results

Analysis of Results: BT-MZ

The hybrid version is equivalent to the MPI for a not very large number of
processes.

When load imbalance appears in pure MPI (starting from 512 processes for class
D and from 2048 for class E), the hybrid version permits maintaining a very good
scalability because by reducing the number of processes.

The limitation of 1024 zones in class D and of 4096 in class E limits the number of
MPI processes to 1024 and 4096 respectively; however, the addition of OpenMP
permits using many more cores while at the same time obtaining excellent
scalability.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 156 / 222

Analysis of Results

Analysis of Results: SP-MZ

This benchmark benefits in certain cases from the hybrid character of the
application even when there is not load imbalance.

The limitation of 1024 zones in class D and of 4096 in class E, limits the number of
MPI processes to 1024 and 4096 respectively; but the addition of OpenMP
permits using many more cores while, at that same time, obtaining an excellent
scalability.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 157 / 222

Case Study: Poisson3D

Presentation of Poisson3D

Poisson3D is an application which resolves Poisson’s equation on the cubic
domain[0,1]x[0,1]x[0,1] using a finite difference method and a Jacobi solver.

∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 = f (x , y , z) in [0, 1]x[0, 1]x[0, 1]

u(x , y , z) = 0. on the boundaries
f (x , y , z) = 2yz(y − 1)(z − 1) + 2xz(x − 1)(z − 1) + 2xy(x − 1)(y − 1)
uexact(x , y) = xyz(x − 1)(y − 1)(z − 1)

Solver

The discretization is made on a regular grid in the three spatial directions (step
h = hx = hy = hz).
The solution is calculated using this Jacobi solver where the solution to the n + 1
iteration is calculated from the immediately preceding n iteration solution.

un+1
ijk =

1
6
(un

i+1jk + un
i−1jk + un

ij+1k + un
ij−1k + un

ijk+1 + un
ijk−1 − h2fijk)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 158 / 222

Case Study: Poisson3D

3D domain decomposition

The physical domain is split into the three spatial directions.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 159 / 222

Case Study: Poisson3D on Babel

Versions

Four different versions have been developed:
1 Pure MPI version without computation-communication overlap
2 Hybrid MPI + OpenMP version without computation-communication overlap
3 Pure MPI version with computation-communication overlap
4 Hybrid MPI + OpenMP version with computation-communication overlap

OpenMP versions are all using a fine-grain approach.

Babel

All tests have been run on Babel which was a IBM Blue Gene/P system consisting of
10,240 nodes each with 4 cores and 2 GiB of memory.

Interesting Phenomena

Cache effects

Derived datatypes

Process mapping

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 160 / 222

Case Study: Poisson3D on Babel

Cartesian topology and cache use

Version Topology Time L1 read DDR read Torus send
(s) (TiB) (TiB) (GiB)

MPI with overlap 16x4x4 52.741 11.501 14.607 112.873
MPI with overlap 4x16x4 39.039 11.413 7.823 112.873
MPI with overlap 4x4x16 36.752 11.126 7.639 37.734

Running on 256 Blue Gene/P cores with a size of 5123.

The way the Cartesian topology is split has a major effect.

The phenomenon appears to be due to cache effects. In 5123, The u and u_new
arrays require 8 MiB/core.

Depending on the topology, the accesses to the central memory are very different
(between 7.6 TiB and 18.8 TiB in read). The elapsed time appears strongly
correlated with these accesses.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 161 / 222

Case Study: Poisson3D

Sub-domain form (5123)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 162 / 222

Case Study: Poisson3D on Babel

Cache effects

The effect of the Cartesian topology shape is explained by the layout in the
caches.

The u and u_new tables are split in the 16x4x4 topology into (34, 130, 130) and in
the 4x16x4 topology into (130, 34, 130).

In the computation of the exterior domain, the computation of the i = constant
faces results in the use of a single u_new element per line of the L3 cache (which
contains 16 doubles).

The i = constant faces are four times smaller in 4x16x4 than in 16x4x4; this
explains a big part of the time difference.

To improve the use of caches, we can calculate more i = constant plans in the exterior
domain than before.

Topology Plans Time (s)
4x16x4 1 39.143
4x16x4 16 35.614

Topology Plans Time (s)
16x4x4 1 52.777
16x4x4 16 41.559

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 163 / 222

Case Study: Poisson3D on Babel

Cache effects on the derived datatypes: analysis

The hybrid version is almost always slower than the pure MPI version.

For an equal number of cores, the communications take twice as much time in the
hybrid version (2563 on 16 cores).

This loss of time comes from sending messages which use the most
non-contiguous derived datatypes (plans YZ).

The construction of these derived datatypes uses only one single element per
cache line.

In the hybrid version, the communication and the filling of the derived datatypes is
made by one single thread per process.

⇒ One single flow in memory read (or write) per computation node. The prefetch
unit is capable of storing only two lines of L3 cache per flow.

In the pure MPI version, four processes per node read or write simultaneously (on
faces four times smaller than on the hybrid version).

⇒ Four simultaneous flows which result in faster filling

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 164 / 222

Case Study: Poisson3D on Babel

Cache effects on the derived datatypes: solution

Replacement of the derived datatypes by manually-filled arrays of 2D faces.

The copying towards and from these faces is parallelizable in OpenMP.

The filling is now done in parallel as in the pure MPI version.

Results of some tests (5123):

MPI std MPI no deriv MPI+OMP std MPI+OMP no deriv
64 cores 84.837s 84.390s 102.196s 88.527s
256 cores 27.657s 26.729s 25.977s 22.277s
512 cores 16.342s 14.913s 16.238s 13.193s

Improvements also appear in the pure MPI version.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 165 / 222

Case Study: Poisson3D on Babel

MPI communications

The preceding tests show the quantities of data sent on the 3D torus to be variable in
function of the topology. The causes are:

The messages sent between processes which are inside a compute node are not
included. A topology in which the processes are well placed, therefore, have a
diminished quantity of sent data on the network.

In addition, the measurements include the transit traffic through each node. A
message sent to a process located on a node non-adjacent to that of the sender
will therefore be measured many times (generating real traffic and producing
contention on the network links).

Version Topology Time L1 read DDR read Torus send
(s) (TiB) (TiB) (GiB)

MPI without overlap 16x4x4 42.826 11.959 9.265 112.873
MPI with overlap 8x8x4 45.748 11.437 10.716 113.142
MPI with overlap 16x4x4 52.741 11.501 14.607 112.873
MPI with overlap 32x4x2 71.131 12.747 18.809 362.979
MPI with overlap 4x16x4 39.039 11.413 7.823 112.873
MPI with overlap 4x4x16 36.752 11.126 7.639 37.734

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 166 / 222

Case Study: Poisson3D on Babel

Comparison: Optimized versus original versions (without overlap)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 167 / 222

Case Study: Poisson3D on Babel

Observations

The Cartesian topology has an important effect on the performances because of
the way in which the caches are re-used.

The Cartesian topology effects the volume of communication and, therefore, the
performances.

The use of derived datatypes has an impact on memory access.

Hybrid versions are (slightly) more performant than pure MPI versions as long as
the work arrays does not hold in the L3 caches.

Achieving good performances in the hybrid version is possible, but it is not always
easy.

Important gains can be achieved (also in the pure MPI version).

A good understanding of the application and of the hardware architecture is
necessary.

The advantage of the hybrid approach is not obvious here (beyond a reduction in
memory usage), probably because pure MPI Poisson3D has already an excellent
scalability and because a fine-grain OpenMP approach was used.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 168 / 222

HYDRO Code

Presentation of the HYDRO Code (1)

This is the code used for the hands-on exercises of the hybrid course.

Hydrodynamics code, 2D-Cartesian grid, finite volume method, resolution of a
Riemann problem on the interfaces with a Godunov method.

For the last few years, in the framework of the IDRIS technology watch, this code
has served as a benchmark for new architectures, from the simple graphics card
to the petaflops machine.

New versions have been regularly developed over the years with new
implementations (new languages, new paradigms of parallelization).

1500 lines of code in its F90 monoprocessor version.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 169 / 222

HYDRO Code

Presentation of the HYDRO Code (2)

Today, there are the following hydro versions:
• Original version, F90 monoprocessor (P.-Fr. Lavallée, R. Teyssier)
• Monoprocessor C version (G. Colin de Verdière)
• MPI F90 parallel version (1D P.-Fr. Lavallée, 2D Ph. Wautelet)
• MPI C parallel version (2D Ph. Wautelet)
• OpenMP Fine-Grain and Coarse-Grain F90 parallel version (P.-Fr. Lavallée)
• OpenMP Fine-Grain C parallel version (P.-Fr. Lavallée)
• MPI2D-OpenMP Fine-Grain and Coarse-Grain F90 hybrid parallel version (P.-Fr.

Lavallée, Ph. Wautelet)
• MPI2D-OpenMP Fine-Grain hybrid parallel version C (P.-Fr. Lavallée, Ph. Wautelet)
• C GPGPU CUDA, HMPP, OpenCL version (G. Colin de Verdière)
• Pthreads parallel version C (D. Lecas)

Many other versions are under development: UPC, CAF, PGI accelerator, CUDA
Fortran, ...

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 170 / 222

Results using 128 cores on Babel

Results for the nx = 100000, ny = 1000 domain

Times (s) 32 cores 64 cores 128 cores
VN mode 49.12 24.74 12.47
DUAL mode 49.00 24.39 12.44
SMP mode 49.80 24.70 12.19

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 171 / 222

Results using 128 cores on Babel

Results for the nx = 10000, ny = 10000 domain

Time in (s) 32 cores 64 cores 128 cores
VN mode 53.14 24.94 12.40
DUAL mode 50.28 24.70 12.22
SMP mode 52.94 25.12 12.56

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 172 / 222

Results using 128 cores on Babel

Results for the nx = 1000, ny = 100000 domain

Time (s) 32 cores 64 cores 128 cores
VN mode 60.94 30.40 16.11
DUAL mode 59.34 30.40 15.20
SMP mode 59.71 29.58 15.36

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 173 / 222

Results using 10 racks on Babel - Weak Scaling

Characteristics of the domains used for weak scaling

On 4096 cores, total number of points of the domain: 16 108

• 400000x4000: domain elongated in the first dimension
• 40000x40000: square domain
• 4000x400000: domain elongated in the second dimension

On 8192 cores, total number of domain points: 32 108

• 800000x4000: domain elongated in the first dimension
• 56568x56568: square domain
• 4000x800000: domain elongated in the second dimension

On 16384 cores, total number of points of the domain: 64 108

• 1600000x4000: domain elongated in the first dimension
• 80000x80000: square domain
• 4000x1600000: domain elongated in the second dimension

On 32768 cores, total number of points of the domain: 128 108

• 3200000x4000: domain elongated in the first dimension
• 113137x113137: square domain
• 4000x3200000: domain elongated in the second dimension

On 40960 cores, total number of points of the domain: 16 109

• 4000000x4000: domain elongated in the first dimension
• 126491x126491: square domain
• 4000x4000000: domain elongated in the second dimension

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 174 / 222

Results using 10 racks on Babel - Weak Scaling

Results for the domain elongated in the first dimension

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN mode 6.62 7.15 8.47 13.89 19.64
DUAL mode 6.21 6.46 6.75 7.85 8.75
SMP mode 6.33 6.38 6.72 7.00 7.22

Performances compared to the MPI
version

Elapsed execution time

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 175 / 222

Results using 10 racks on Babel - Weak Scaling

Results for the square domain

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN mode 6.17 6.67 8.00 13.32 19.57
DUAL mode 6.17 6.14 6.52 7.64 8.56
SMP mode 6.24 6.19 6.33 6.57 7.19

Performances compared to the MPI
version

Elapsed execution time

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 176 / 222

Results using 10 racks on Babel - Weak Scaling

Results for the domain elongated in the second dimension

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN mode 8.04 8.28 9.79 15.42 21.17
DUAL mode 8.22 8.30 8.20 9.44 12.08
SMP mode 7.33 8.58 8.61 8.43 8.64

Performances compared to the MPI
version

Elapsed execution time

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 177 / 222

Results using 10 racks on Babel - Weak Scaling

Interpretation of results

The results of weak scaling, obtained by using up to 40960 computation cores, are
very interesting. Certain phenomena become visible with this high number of
cores.

The scalability of the flat MPI version shows its limits very rapidly. No sooner does
it scale to 16384 cores when the elapsed time begins to explode.

As we expected, the DUAL hybrid version, but even more the SMP version,
behave very well up to 32768 cores with nearly constant elapsed times. On 40960
cores, the SMP version shows a very slight additional cost; on the DUAL version
the additional cost becomes significant.

In weak scaling, the scalability limit of the flat MPI version is 16384 cores, that of
the DUAL version is 32768 cores, and that of the SMP version has not yet been
reached on 40960 cores!

On 40960 cores, the SMP hybrid version is between 2.5 and 3 times faster than
the pure MPI version.

It is clear that scaling (here over 16K cores) with this type of parallelization method
(i.e. domain decomposition), requires recourse to hybrid parallelization. It is not
enough to use MPI alone !

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 178 / 222

Results using 10 racks on Babel - Strong Scaling

Results for the nx = 400000, ny = 4000 domain

Time(s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN Mode 6.62 4.29 4.44 8.30 13.87
DUAL Mode 6.21 3.34 2.03 2.40 3.13
SMP Mode 6.33 3.18 1.75 1.24 1.29

Performances compared to the MPI
version

Scalability up to 40960 cores

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 179 / 222

Results using 10 racks on Babel - Strong Scaling

Results for the nx = 40000, ny = 40000 Domain

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN Mode 6.17 3.54 3.10 8.07 13.67
DUAL Mode 6.17 3.10 1.88 2.35 3.12
SMP Mode 6.24 3.10 1.63 1.20 1.26

Performances compared to the MPI
version

Scalability up to 40960 cores

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 180 / 222

Results using 10 racks on Babel - Strong Scaling

Results for the nx = 4000, ny = 400000 Domain

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN Mode 8.04 4.31 4.52 8.26 13.85
DUAL Mode 8.22 3.96 2.22 2.46 3.34
SMP Mode 7.33 3.94 1.91 1.29 1.32

Performances compared to the MPI
version

Scalability up to 40960 cores

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 181 / 222

Results using 10 racks on Babel - Strong Scaling

Interpretation of results

The results of strong scaling, obtained by using up to 40960 computation cores,
are very interesting. Here again, new phenomena emerge with this high number of
cores.

The scalability of the flat MPI version shows its limits very quickly. It no more than
scales up to 8192 cores when it begins to collapse.

As we expected, the DUAL hybrid version, but even more the SMP version,
behave very well up to 16384 cores, with a perfectly linear acceleration. The SMP
version continues to scale (non-linearly) up to 32768 cores; beyond this, the
performances are no longer improved.

In strong scaling, the scalability limit of the flat MPI version is 8192 cores,
whereas that of the SMP hybrid version is 32768 cores. We find here a factor of 4
which corresponds to the number of cores in the BG/P node !

The best hybrid version (32768 cores) is between 2.6 and 3.5 times faster than the
best pure MPI version (8192 cores).

It is clear that with this type of parallelization method (i.e. domain decomposition),
scaling (here over 10K cores) requires recourse to hybrid parallelization. It is not
enough to use MPI alone!

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 182 / 222

Results on Two Vargas Nodes

Results for the nx = 100000, ny = 1000 domain

MPI x OMP Time (s)
per node Mono 64 cores
32 x 1 361.4 7.00
16 x 2 361.4 6.11
8 x 4 361.4 5.75
4 x 8 361.4 5.61
2 x 16 361.4 5.86
1x 32 361.4 6.24

The hybrid version is always more efficient than the pure MPI version.

The maximum gain is superior to 20% for the 8MPIx4OMP, 4MPIx8OMP and
2MPIx16OMP distributions.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 183 / 222

Results on Two Vargas Nodes

Results for the nx = 10000, ny = 10000 Domain

MPI x OMP Time(s)
per node Mono 64 cores
32 x 1 449.9 6.68
16 x 2 449.9 6.03
8 x 4 449.9 5.64
4 x 8 449.9 5.82
2 x 16 449.9 5.87
1 x 32 449.9 6.31

The hybrid version is always more efficient than the pure MPI version.

The maximum gain is on the order of 20% for the 8MPIx4OMP distribution.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 184 / 222

Results on Two Vargas Nodes

Results for the nx = 1000, ny = 100000 domain

MPI x OMP Time (s)
per node Mono 64 cores
32 x 1 1347.2 8.47
16 x 2 1347.2 7.75
8 x 4 1347.2 6.92
4 x 8 1347.2 7.13
2 x 16 1347.2 7.84
1 x 32 1347.2 8.53

The hybrid version is always more efficient than the pure MPI version.

The maximum gain is on the order of 20% for the 8MPIx4OMP ditsribution.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 185 / 222

Results on Two Vargas Nodes

Interpretation of Results

Whatever the domain type, the flat MPI version and the hybrid version with only
one MPI process per node systematically give the least efficient results.

The best results are obtained on the hybrid version with (a) a distribution of eight
MPI processes per node and four OpenMP threads per MPI process for the two
last test cases, and (b) a distribution of four MPI processes per node and sixteen
OpenMP threads per MPI process for the first test case.

We find here a ratio (i.e. number of MPI processes/number of OpenMP threads)
close to the one obtained during the interconnection network saturation tests
(saturation beginning with eight MPI processes per node).

Even with a modest size in terms of the number of cores used, it is interesting to
note that the hybrid approach prevails each time, sometimes even with significant
gains in performance.

Very encouraging and shows that there is a real interest in increasing the number
of cores used.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 186 / 222

Conclusions on the MPI/OpenMP Hybrid Approach

Conclusions

A sustainable approach, based on recognized standards (MPI and OpenMP): It is
a long-term investment.
The advantages of the hybrid approach compared to the pure MPI approach are
many:

• Significant memory savings
• Gains in performance (on a fixed number of execution cores) due to better code

adaptation to the target architecture
• Gains in terms of scalability: Permits pushing the limit of code scalability with a factor

equal to the number of cores of the shared-memory node

These different gains are proportional to the number of cores in the
shared-memory node, a number which will increase significantly in the short term
(general use of multi-core processors)

The only viable solution able to take advantage of the massively parallel
architectures of the future (multi-peta, exascale, ...).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 187 / 222

Tools

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 188 / 222

Sommaire I

6 Tools
SCALASCA
TAU
TotalView

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 189 / 222

SCALASCA

Description

SCALASCA is a graphical tool for performance analysis of parallel applications.
Principal characteristics:

Support for MPI and multithreaded/OpenMP applications

Profiling and tracing modes (limited to MPI_THREAD_FUNNELED for traces)

Identification/automatic analysis of common performance problems (using trace
mode)

Unlimited number of processes

Support for hardware counters (via PAPI)

Use

Compile your application with skin f90 (or other compiler).

Execute with scan mpirun. Use the option -t for the trace mode.

Visualize the results with square.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 190 / 222

SCALASCA

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 191 / 222

TAU

Description

TAU is a graphical tool for performance analysis of parallel applications. Prinicipal
characteristics:

Support for MPI and multithreaded/OpenMP applications

Profiling and tracing modes

Unlimited number of processes

Support for hardware counters (via PAPI

Automatic instrumentation of loops

Memory allocations track

I/O track

Call tree

3D visualization (useful for comparing processes/threads to each other)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 192 / 222

TAU

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 193 / 222

TotalView

Description

TotalView is a graphical debugging tool for parallel applications. Key features:

Support for MPI and multithreaded/OpenMP applications

Support for C/C++ and Fortran95

Integrated memory debugger

Maximum number of processes (depending on the license)

Use

Compile your application with -g and a not very aggressive level of optimisation
ion.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 194 / 222

TotalView

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 195 / 222

Appendices

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 196 / 222

Sommaire I

7 Appendices
MPI

Factors Affecting MPI Performance
Ready Sends
Persistent Communications

Introduction to Code Optimisation
SBPR on older architectures

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 197 / 222

Factors Affecting MPI Performance

Machine nodes

Cores (frequency, number per node, ...)

Memory (throughputs, latencies, caches, number of channels, sharing between
the different cores, ...)

Network cards (throughputs, latencies, type, node connection, number of links, ...)

Availability of an RDMA engine for the communications

OS (light kernel, ...)

Configuration/tuning of the machine

Network

Card type (proprietary, InfiniBand,Myrinet, Ethernet, ...)

Network topology (star, torus 3D or more, fat tree, hypercube, ...)

Protocol (low level, TCP/IP, ...)

Contention (between processes of the same job or different jobs)

Configuration/tuning of network

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 198 / 222

Factors Affecting MPI Performance

Application

Algorithms, memory access, ...

Computations/communications, granularity

Data-partitioning method

Load balancing

Process mapping

Process-core binding

Input/output

Message size

Types of communications, use of communicators, ...

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 199 / 222

Factors Affecting MPI Performance

MPI implementation

Adaptation to the machine architecture (manufacturer’s implementation, open
source, ...)

Use of buffers

Communication protocols (Eager, Rendezvous, ...)

Influence of environment variables

Implementation quality and algorithms used

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 200 / 222

Ready Sends

Ready sends

A Ready send is made by calling the subroutine MPI_Rsend or MPI_Irsend.

Attention: It is obligatory that these calls be made only when the receive has already
been posted.

The use of Ready send is strongly advised against.

Advantages

Slightly more efficient than the synchronous mode because the synchronization
protocol can be simplified.

Disadvantages

Errors if the receiver is not ready during the send.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 201 / 222

Persistent Communications

Characteristics

Persistent communications permits communication repetitions an unlimited
number of times in the same memory space, but using different values.

The benefit is to avoid re-initializing these communications (and the associated
data structures) at each call (theoretically, less additional costs).

A communication channel is thereby created for the sending of messages.

These are non-blocking point-to-point communications.

MPI Persistent communications do not add any significant benefit to the current
machines. The performances are generally very close to the performances of
standard non-blocking point-to-point communications.

The use of persistent communications is not recommended because they don’t
offer any particular advantages at this time.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 202 / 222

Persistent Communications

Usage

Initialization of persistent communications with
MPI_Send_init/MPI_Recv_init (or variants).
Repetition of the communication sequence – for example, in a loop:

• Beginning of the communication with a call to MPI_Start
• End of the communication (non-blocking) with MPI_Wait

Freeing of resources with MPI_Request_free.

Example
call MPI_Send_init(data,sz,MPI_REAL,dest,tag,comm,req,ierr)
do i=1,niter
call MPI_Start(req,ierr)
call kernel()
call MPI_Wait(req,MPI_STATUS_IGNORE,ierr)

end do
call MPI_Request_free(req,ierr)

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 203 / 222

Persistent Communications

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 204 / 222

Introduction to Code Optimisation

Definition

Optimising a code consists of reducing its resource needs.

The resource needs are diverse but we are generally referring to elapsed time.

Memory consumption and disk-space usage also fall into this category.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 205 / 222

Introduction to Code Optimization

Why optimise?

Optimizing an application can bring a number of advantages:

Obtain results faster through a reduction in elapsed time.

Possibility of obtaining more results during your attributed hours.

Possibility of carrying out larger computations.

Better understanding of the code, the machine architecture and their interactions.

Competitive advantage in comparison to other teams;

Detection and correction of bugs through the re-reading of code sources.

Improved application performance also permits:

Reduction in computing energy consumption.

Making better use of the machine (the cost of purchasing, maintaining, and using
a supercomputer is not negligible). At IDRIS, each attributed hour represents an
expense for the whole scientific community.

Liberating resources for other research groups.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 206 / 222

Introduction to Code Optimisation

Why to NOT optimise?

Insufficient resources or means (lack of staff, time, skills, ...)

Decrease in code portability (Many optimizations are specific to the machine
architecture.)

Risk of performance losses on other machines

Decreased source readability and more difficult maintenance

Risk of unintentionally introducing bugs

Limited life span for an optimised code

Sufficient code speed already (It is useless to optimise a code which already
provides results in an acceptable time.)

Already optimised code

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 207 / 222

Introduction to Code Optimisation

When to optimise?

An application should not be optimised befpre it is working correctly for the
following reasons:

• Risk of unintentionally introducing new bugs.
• Decrease in readability and code understanding.
• Risk of optimising procedures which could be abandoned; used very little (if at all); or

totally rewritten.

Do not launch into optimisation unless the application is (a) too slow, or (b) does
not allow making large computations in an acceptable period of time.

If you are fully satisfied with the performances of your application, the investment
may not be necessary.

You must have enough available time ahead of you.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 208 / 222

Introduction to Code Optimization

How to optimise?

First and foremost, make a sequential and parallel profiling with a realistic test set
in order to identify the critical zones.

Optimize in the places where the resources are most highly consumed.

Verify every optimisation: Are the results always correct? Have the performances
really improved?

Question: If there is little improvement, should you keep the optimisation?

What to optimise?

Sequential performances

MPI communications, OpenMP performances, and scalability

The I/O

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 209 / 222

Introduction to Code Optimisation

Sequential optimisation

Algorithms and conception

Libraries

Compiler

Caches

Specialized processing units (SIMD, SSE, AVX, QPX...)

Other

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 210 / 222

Introduction to Code Optimization

Optimization of MPI communications, OpenMP and scalability

Algorithms and conception

Load balancing

Computation-communication overlap

Process mapping

Hybrid programming

Other

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 211 / 222

Introduction to Code Optimization

Optimization of I/O

Only read and write what is necessary

Reduce the precision (simple precision instead of double)

Parallel I/O

Libraries (MPI-I/O, HDF5, NetCDF, Parallel-NetCDF...)

MPI-I/O hints

Other

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 212 / 222

Optimal Use of the Interconnection Network

MPI_THREAD_FUNNELED version of SBPR: Results on Vargas

4 links in //, DDR Infiniband, peak throughput 8 GB/s.

MPI x OMP Total throughput (MB/s) Total throughput (MB/s) Total throughput (MB/s)
per node Message of 1 MB Message of 10 MB Message of 100 MB
1 x 32 1016 1035 959
2 x 16 2043 2084 1803
4 x 8 3895 3956 3553
8 x 4 6429 6557 5991
16 x 2 7287 7345 7287
32 x 1 7412 7089 4815

Interpretations

With a single data flow, we only use one-eighth of the inter-node network
bandwidth.

Saturation of Vargas inter-node network links begins to appear at 8 parallel flows
(i.e. 8 MPI processes per node).

There is total saturation with 16 parallel flows (i.e. 16 MPI processes per node).

With 16 flows in parallel, we obtain a throughput of 7.35 GiB/s, or more than 90%
of the available peak inter-node network bandwidth!

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 213 / 222

Optimal Use of the Interconnect Network

MPI_THREAD_FUNNELED version of SBPR: Results on Babel

Peak throughput: 425 MB/s

MPI x OMP Total throughput (MB/s) Total throughput (MB/s) Total throughput (MB/s)
par node Message of 1 MB Message of 10 MB Message of 100 MB
SMP (1 x 4) 373.5 374.8 375.0
DUAL (2 x 2) 374.1 374.9 375.0
VN (4 x 1) 374.7 375.0 375.0

Interpretations

The use of a single data flow (i.e. one MPI process per node) is sufficient to totally
saturate the interconnection network between two neighboring nodes.

The throughput rate reached is 375 MB/s, or 88% of the peak inter-node network
bandwidth.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 214 / 222

Optimal Use of the Interconnect Network

MPI_THREAD_MULTIPLE version of SBPR: Results on Vargas

4 links in // Infiniband DDR, peak throughput 8 GB/s.

MPI x OMP Total throughput (MB/s) Total throughput (MB/s) Total thrpt (MB/s)
per node Message of 1 MB Message of 10 MB Message of 100 MB
1 x 32 (1 flow) 548.1 968.1 967.4
1 x 32 (2 flows) 818.6 1125 1016
1 x 32 (4 flows) 938.6 1114 1031
1 x 32 (8 flows) 964.4 1149 1103
1 x 32 (16 flows) 745.1 1040 1004
1 x 32 (32 flows) 362.2 825.1 919.9

Interpretations

The MPI_THREAD_MULTIPLE version has a very different performance on Vargas
(compared to the MPI_THREAD_FUNNELED version): The throughput does not
increase with the number of flows in parallel but remains constant.

Whether there is only one or several flows, we always use just one-eighth of the
inter-node network bandwidth. As a result, it is never saturated!

This MPI_THREAD_MULTIPLE approach (i.e. several threads communicating
simultaneously within the same MPI process) is, therefore, absolutely unsuitable
to the Vargas machine; it is better to choose the MPI_THREAD_FUNNELED
approach.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 215 / 222

Optimal Use of the Interconnect Network

MPI_THREAD_MULTIPLE version of SBPR: Results on Babel

Peak throughput 425 Mo/s

MPI x OMP Total throughput (MB/s) Total throughput (MB/s) Total throughput (MB/s)
per node Message of 1 MB Message of 10 MB Message of 100 MB
SMP (1 flow) 372.9 374.7 375.0
SMP (2 flows) 373.7 374.8 375.0
SMP (4 flows) 374.3 374.9 375.0

Interpretations

The performances of the MPI_THREAD_MULTIPLE and MPI_THREAD_FUNNELED
versions are comparable on Babel.

The use of only one data flow (i.e. one single communication thread per node) is
sufficient to totally saturate the interconnection network between two neighboring
nodes.

The throughput reached is 375 MB/s, which is 88% of the peak inter-node network
bandwidth.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 216 / 222

Hands-on Exercises

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 217 / 222

TP1 — MPI — HYDRO

Objective

Parallelize an application using MPI.

Statement

You are asked to start with the HYDRO sequential version application. It should be
parallelized by using MPI.

1 Firstly, the parallelization can be done in only one direction (north-south in Fortran
to avoid using derived datatypes).

2 Secondly, you are asked to do a parallelized version in both spatial directions
(north-south and east-west).

Some Tips

The grid cells used to impose the boundary conditions in the sequential version
can serve as ghost cells for the communications between processes.

A boundary between the domains can be seen as a particular boundary condition.

The use of a Cartesian topology type communicator is highly recommended,
especially for the 2D decomposition.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 218 / 222

TP2 — OpenMP — Dual-Dependency Nested Loops

Objective

Parallelize the following computation kernel using OpenMP.

! Dual-dependency nested loops
do j = 2, ny

do i = 2, nx
V(i,j) =(V(i,j) + V(i-1,j) + V(i,j-1))/3

end do
end do

Statement

You are asked to start with a computation kernel in the sequential version. It should be
parallelized by using OpenMP.

1 Using the pipeline method.
2 Optional: Using the hyperplane method.
3 Make a scalability curve of your parallel version(s).

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 219 / 222

TP3 — OpenMP — HYDRO

Objective

Parallelize an application using OpenMP.

Statement

You are asked to begin with the HYDRO sequential version application to construct a
Fine-Grain OpenMP parallel version, but with only one parallel region.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 220 / 222

TP4 — Hybrid MPI and OpenMP — Global synchronization

Objective

Synchronize all of the OpenMP threads located on the different MPI processes.

Statement

You are asked to complete the barrier_hybride.f90 file so that all the OpenMP threads
on the different MPI processes would be synchronized during a call to the
barrierMPIOMP subroutine.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 221 / 222

TP5 — Hybrid MPI and OpenMP — HYDRO

Objective

Parallelize an application using MPI and OpenMP.

Statement
1 Integrate the changes added to HYDRO in the previous hands-on exercises to

obtain a hybrid version of the code.
2 Compare the performances obtained with the different versions. Is the scalability

good?
3 What improvements can be added to obtain better performances? Make tests and

compare.

P.-Fr. Lavallée — P. Wautelet (IDRIS) Hybrid Programming 15 June 2015 222 / 222

	Main Part
	Preamble
	Introduction
	Moore's Law and Electric Consumption
	The Memory Wall
	As for Supercomputers
	Amdahl's Law
	Gustafson-Barsis' Law
	Consequences for users
	Evolution of Programming Methods
	Presentation of the Machines Used

	Advanced MPI
	Introduction
	History
	Types of MPI Communications
	Computation-Communication Overlap
	Derived Datatypes
	Load Balancing
	Process Mapping

	Advanced OpenMP
	Introduction
	Limitations of OpenMP
	The Fine-Grain (FG) Classical Approach
	The Coarse-Grain Approach (CG)
	CG vs. FG: additional costs of work-sharing
	CG — Impact on the Code
	CG — Low-Level Synchronizations
	MPI/OpenMP-FG/OpenMP-CG Compared Performances
	Conclusion

	Hybrid programming
	Definitions
	Reasons for Hybrid Programming
	Applications Which Can Benefit From Hybrid Programming
	MPI and Multithreading
	MPI and OpenMP
	Adequacy to the Architecture: Memory Savings
	Adequacy to the Architecture: the Network Aspect
	Effects of a non-uniform architecture
	Case Study: Multi-Zone NAS Parallel Benchmark
	Case Study: Poisson3D
	Case Study: HYDRO

	Tools
	SCALASCA
	TAU
	TotalView

	Appendices
	MPI
	Introduction to Code Optimisation
	SBPR on older architectures

	Hands-on Exercises
	TP1 — MPI — HYDRO
	TP2 — OpenMP — Dual-Dependency Nested Loops
	TP3 — OpenMP — HYDRO
	TP4 — Hybrid MPI and OpenMP — Global synchronization
	TP5 — Hybrid MPI and OpenMP — HYDRO

