
Hybrid MPI-OpenMP Programming

Pierre-Francois.Lavallee@idris.fr
Philippe.Wautelet@aero.obs-mip.fr

Remi.Lacroix@idris.fr

CNRS — IDRIS / LA

Version 3.1.0 — 29 November 2018

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 1 / 109

mailto:pierre-francois.lavallee@idris.fr
mailto:philippe.wautelet@aero.obs-mip.fr
mailto:remi.lacroix@idris.fr


Availability and Updating

This document is subject to regular updating. The most recent version is available on
the IDRIS Web server, section IDRIS Training:

http://www.idris.fr/eng

IDRIS
Institute for Development and Resources in Intensive Scientific Computing
Rue John Von Neumann
Bâtiment 506
BP 167
91403 ORSAY CEDEX
France
http://www.idris.fr

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 2 / 109

http://www.idris.fr/eng
http://www.idris.fr


Table of Contents I
Preamble

Introduction
Moore’s Law and Electric Consumption
The Memory Wall
As for Supercomputers
Amdahl’s Law
Gustafson-Barsis’ Law
Consequences for users
Evolution of Programming Methods
Presentation of the Machines Used

Hybrid programming
Definitions
Reasons for Hybrid Programming
Applications Which Can Benefit From Hybrid Programming
MPI and Multithreading
MPI and OpenMP
Adequacy to the Architecture: Memory Savings
Adequacy to the Architecture: the Network Aspect
Effects of a non-uniform architecture
Case Study: Multi-Zone NAS Parallel Benchmark
Case Study: HYDRO

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 3 / 109



Table of Contents II
Tools

SCALASCA
TAU
TotalView

Hands-on Exercises
TP1 — Hybrid MPI and OpenMP — Global synchronization
TP2 — Hybrid MPI and OpenMP — Parallel PingPong
TP3 — Heat3D, from MPI to hybrid MPI and OpenMP version
TP4 — HYDRO, from MPI to hybrid MPI and OpenMP version

Appendices
SBPR on older architectures
Case Study: Poisson3D

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 4 / 109



Preamble

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 5 / 109



Presentation of the Training Course
The purpose of this course is to present MPI+OpenMP hybrid programming as well as
feedback from effective implementations of this model of parallelization on several
application codes.

The Introduction chapter endeavors to show, through technological evolutions of
architectures and parallelism constraints, how the transition to hybrid
parallelization is indispensible if we are to take advantage of the power of the
latest generation of massively parallel machines.

However, a hybrid code cannot perform well if the MPI and OpenMP parallel
implementations have not been previously optimized.
The Hybrid programming section is entirely dedicated to the MPI+OpenMP hybrid
approach. The benefits of hybrid programming are numerous:

• Memory savings
• Improved performances
• Better load balancing
• Coarser granularity, resulting in improved scalability
• Better code adequacy to the target architecture hardware specificities

However, as you will notice in the hands-on exercises, the implementation on a
real application requires a large time investment and a thorough familiarity with
MPI and OpenMP.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 6 / 109



Introduction

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 7 / 109



Moore’s Law

Statement
According to Moore’s law, the number of transistors which can be placed on an
integrated circuit at a reasonable cost doubles every two years.

Electric consumption

Dissipated electric power = frequency3 (for a given technology).

Dissipated power per cm2 is limited by cooling.

Energy cost.

Moore’s law and electric consumption

Processor frequency is no longer increasing due to prohibitive electrical
consumption (maximum frequency limited to 3GHz since 2002-2004).

Number of transistors per chip continues to double every two years.

=> Number of cores per chip is increasing: The Intel Skylake chips have up to 28 cores
each and can run 56 threads simultaneously, the AMD EPYC chips have up to 32
cores each and can run 64 threads simultaneously.
=> Some architectures favor low-frequency cores, but in a very large number (IBM Blue
Gene).

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 8 / 109



Moore’s Law

http://en.wikipedia.org/wiki/Moore%27s_law

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 9 / 109

http://en.wikipedia.org/wiki/Moore%27s_law


The Memory Wall
Causes

Throughputs towards the memory are not increasing as quickly as processor
computing power.

Latencies (access times) of the memory are decreasing very slowly.

Number of cores per memory module is increasing.

Consequences

The gap between the memory speed and the theoretical performance of the cores
is increasing.

Processors waste more and more cycles while waiting for data.

Increasingly difficult to maximally exploit the performance of processors.

Partial solutions

Addition of cache memories is essential.

Access parallelization via several memory banks as found on the vector
architectures (Intel Skylake: 6 channels, AMD EPYC: 8 channels, ARM
ThunderX2: 8 channels).

If the clock frequency of the cores stagnates or falls, the gap could be reduced.
P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 10 / 109



TOP500

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 11 / 109



TOP500

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 12 / 109



TOP500

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 13 / 109



As for Supercomputers

Technical evolution

The computing power of supercomputers is doubling every year (faster than
Moore’s Law, but electrical consumption is also increasing).

The number of cores is increasing rapidly (massively parallel (IBM Blue Gene Q)
and many-cores architectures (Intel Xeon Phi)).

Emergence of heterogeneous accelerated architectures (standard processors
coupled with GPU, FPGA or PEZY-SC2).

Machine architecture is becoming more complex at all levels (processors/cores,
memory hierarchy, network and I/O).

Memory per core has been stagnating and is beginning to decrease.

Performance per core is stagnating and is much lower on some machines than on
a simple laptop (IBM Blue Gene, Intel Xeon Phi).

Throughput towards the disk and memory is increasing more slowly than the
computing power.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 14 / 109



Amdahl’s Law

Statement
Amdahl’s Law predicts the theoretical maximum speedup obtained by parallelizing a
code ideally, for a given problem with a fixed size:

Sp(P) =
Ts

T//(P)
=

1
α+ (1−α)

P

<
1
α

(P →∞)

with Sp the speedup, Ts the execution time of the sequential code (monoprocessor), T//(P) the
execution time of the ideally parallelized code on P cores and α the non-parallelizable part of the
application.

Interpretation
Regardless of the number of cores, the speedup is always less than the inverse of the
percentage represented by the purely sequential fraction.
Example: If the purely sequential fraction of a code represents 20% of the execution
time of the sequential code, then regardless of the number of cores, we will have:
Sp < 1

20% = 5

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 15 / 109



Theoretical Maximum Speedup
Cores α (%)

0 0.01 0.1 1 2 5 10 25 50
10 10 9.99 9.91 9.17 8.47 6.90 5.26 3.08 1.82

100 100 99.0 91.0 50.2 33.6 16.8 9.17 3.88 1.98
1000 1000 909 500 91 47.7 19.6 9.91 3.99 1.998

10000 10000 5000 909 99.0 49.8 19.96 9.99 3.99 2
100000 100000 9091 990 99.9 49.9 19.99 10 4 2

∞ ∞ 10000 1000 100 50 20 10 4 2

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 16 / 109



The Gustafson-Barsis Law

Statement
The Gustafson-Barsis Law predicts the theoretical maximum speedup obtained by
parallelizing a code ideally for a problem of constant size per core, in supposing that
the execution time of the sequential fraction does not increase with the overall problem
size:

Sp (P) = α+ P (1− α)

with Sp the speedup, P the number of cores and α the non-parallelizable part of the application.

Interpretation
This law is more optimistic than Amdahl’s because it shows that the theoretical
speedup increases with the size of the problem being studied.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 17 / 109



Consequences for the Users

Consequences for the applications

It is necessary to exploit a large number of relatively slow cores.

Tendancy for individual core memory to decrease: Necessity to not waste memory.

Higher level of parallelism continually needed for the efficient usage of modern
architectures (regarding both computing power and memory size).

The I/O also becoming an increasingly current problem.

Consequences for the developers

The time has ended when you only needed to wait a while to obtain better
performance (i.e. stagnation of computing power per core).

Increased necessity to understand the hardware architecture.

More and more difficult to develop codes on your own (need for experts in HPC as
well as multi-disciplinary teams).

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 18 / 109



Evolution of Programming Methods

Evolution of programming methods

MPI is still predominant and it will remain so for some time (a very large
community of users and the majority of current applications).

The MPI-OpenMP hybrid approach is being used more and seems to be the
preferred approach for supercomputers.

GPU programming usage is increasing, but it is still complex and requires a third
level of parallelism (MPI+OpenMP+GPU).

New parallel programming languages are appearing (UPC, Coarray- Fortran,
PGAS languages, X10, Chapel, ...), but they are in experimental phases (at
variable levels of maturity). Some are very promising; it remains to be seen
whether they will be used in real applications.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 19 / 109



IDRIS Configuration

Turing: IBM Blue Gene/Q

Ada: IBM x3750

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 20 / 109



IDRIS Configuration

Important numbers

Turing: 6 racks Blue Gene/Q:
• 6,144 nodes
• 98,304 cores
• 393,216 threads
• 96 TiB
• 1.258 Tflop/s
• 636 kW (106 kW/ rack)

Ada: 15 racks IBM x3750M4:
• 332 compute nodes and 4 pre-/post-processing nodes
• 10,624 Intel SandyBridge cores at 2.7 GHz
• 46 TiB
• 230 Tflop/s
• 366 kW

5 PiB on shared disks between BG/Q and Intel (100 GiB/s peak bandwidth)

1 MW for the whole configuration (not counting the cooling system)

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 21 / 109



IDRIS Configuration

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 22 / 109



Blue Gene/Q Architecture

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 23 / 109



Hybrid programming

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 24 / 109



Definitions

Definitions

Hybrid parallel programming consists of mixing several parallel programming
paradigms in order to benefit from the advantages of the different approaches.

In general, MPI is used for communication between processes, and another
paradigm (OpenMP, pthreads, PGAS languages, UPC, ...) is used inside each
process.

In this training course, we will talk exclusively about the use of MPI with OpenMP.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 25 / 109



Hybrid Programming
Schematic drawing

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 26 / 109



Reasons for Hybrid Programming

Advantages of hybrid programming (1)

Improved scalability through a reduction in both the number of MPI messages and
the number of processes involved in collective communications (MPI_Alltoall
is not very scalable), and by improved load balancing.

More adequate to the architecture of modern supercomputers (interconnected
shared-memory nodes, NUMA machines, ...), whereas MPI used alone is a flat
approach.

Optimization of the total memory consumption, thanks to the OpenMP
shared-memory approach; less replicated data in the MPI processes; and less
memory used by the MPI library itself.

Reduction of the footprint memory when the size of certain data structures
depends directly on the number of MPI processes.

Can go beyond certain algorithmic limitations (for example, the maximum
decomposition in one direction).

Enhanced performance of certain algorithms by reducing the number of MPI
processes (fewer domains = a better preconditioner, provided that the
contributions of other domains are dropped).

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 27 / 109



Reasons for Hybrid Programming
Advantages of hybrid programming (2)

Fewer simultaneous accesses in I/O and a larger average record size; fewer and
more suitably-sized requests cause less load on the meta-data servers, and
potentially significant time savings on a massively parallel application.

There are fewer files to manage if each process writes its own file(s) (an approach
strongly advised against, however, in a framework of massive parallelism).

Certain architectures require executing several threads (or processes) per core in
order to efficiently use the computational units.

An MPI parallel code is a succession of computation and communication phases.
The granularity of a code is defined as the average ratio between two successive
computation and communication phases. The greater the granularity of a code,
the more scalable it is. Compared to the pure MPI approach, the hybrid approach
significantly increases the granularity and consequently, the scalability of codes.

Disadvantages of hybrid programming

Complexity and higher level of expertise.

Necessity of having good MPI and OpenMP performances (Amdahl’s law applies
separately to the two approaches).

Total gains in performance are not guaranteed (extra additional costs, ...).
P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 28 / 109



Applications Which Can Benefit From Hybrid Programming

Applications which can benefit from hybrid programming

Codes having limited MPI scalability (due to using calls to MPI_Alltoall, for
example)

Codes requiring dynamic load balancing

Codes limited by memory size and having a large amount of replicated data in the
MPI process or having data structures which depend on the number of processes
for their dimension

Inefficient local MPI implementation library for intra-node communications

Many massively parallel applications

Codes working on problems of fine-grain parallelism or on a mixture of fine-grain
and coarse-grain parallelism

Codes limited by the scalability of their algorithms

...

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 29 / 109



MPI and Multithreading

Thread support in MPI
The MPI standard provides a particular subroutine to replace MPI_Init when the
MPI application is multithreaded: This subroutine is MPI_Init_thread.

The standard does not require a minimum level of thread support. Certain
architectures and/or implementations, therefore, could end up not having any
support for multithreaded applications.

The ranks identify only the processes; the threads cannot be specified in the
communications.

Any thread can make MPI calls (depending on the level of support).

Any thread of a given MPI process can receive a message sent to this process
(depending on the level of support).

Blocking calls will only block the thread concerned.

The call to MPI_Finalize must be made by the same thread that called
MPI_Init_thread and only when all the threads of the process have finished
their MPI calls.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 30 / 109



MPI and Multithreading

MPI_Init_thread

int MPI_Init_thread(int *argc, char *((*argv)[]),
int required, int *provided)

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

The level of support requested is provided in the variable "required". The level actually
obtained (which could be less than what was requested) is returned in "provided".

MPI_THREAD_SINGLE: Only one thread per process can run.

MPI_THREAD_FUNNELED: The application can launch several threads per
process, but only the main thread (the one which made the call to
MPI_Init_thread) can make MPI calls.

MPI_THREAD_SERIALIZED: All the threads can make MPI calls, but only one at
a time.

MPI_THREAD_MULTIPLE: Entirely multithreaded without restrictions.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 31 / 109



MPI and Multithreading

Other MPI subroutines
MPI_Query_thread returns the support level of the calling process:

int MPI_Query_thread(int *provided)
MPI_QUERY_THREAD(PROVIDED, IERROR)

MPI_Is_thread_main gives the return, whether it is the main thread calling or not.
(Important if the support level is MPI_THREAD_FUNNELED and also for the call
MPI_Finalize.)

int MPI_Is_thread_main(int *flag)
MPI_IS_THREAD_MAIN(FLAG, IERROR)

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 32 / 109



MPI and Multithreading

Restrictions on MPI collective calls (1)
In MPI_THREAD_MULTIPLE mode, the user must ensure that collective operations
using the same communicator, memory window, or file handle are correctly ordered
among the different threads.

It is forbidden, therefore, to have several threads per process making calls with the
same communicator without first ensuring that these calls are made in the same
order on each of the processes.

We cannot have at any given time, therefore, more than one thread making a
collective call with the same communicator (whether the calls are different or not).

For example, if several threads make a call to MPI_Barrier with
MPI_COMM_WORLD, the application may hang (this was easily verified on Babel
and Vargas).

2 threads, each one calling an MPI_Allreduce (with the same reduction
operation or not), could obtain false results.

2 different collective calls cannot be used either (for example, an MPI_Reduce
and an MPI_Bcast).

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 33 / 109



MPI and Multithreading

Restrictions on MPI collective calls (2)
There are several possible ways to avoid these difficulties:

Impose the order of the calls by synchronizing the different threads interior to each
MPI process.

Use different communicators for each collective call.

Only make collective calls on one single thread per process.

Comment: In MPI_THREAD_SERIALIZED mode, the restrictions should not exist
because the user must ensure that at any given moment, a maximum of only one
thread per process is involved in an MPI call (collective or not). Caution: The same
order of calls in all the processes must nevertheless be respected.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 34 / 109



MPI and OpenMP

Implications of the different support levels
The multithreading support level provided by the MPI library imposes certain
conditions and restrictions on the use of OpenMP:

MPI_THREAD_SINGLE: OpenMP cannot be used.

MPI_THREAD_FUNNELED: MPI calls must be made either outside of OpenMP
parallel regions, in OpenMP master regions, or in protected zones (call to
MPI_Is_thread_main).

MPI_THREAD_SERIALIZED: In the OpenMP parallel regions, MPI calls must be
made in critical sections (when necessary, to ensure that only one MPI call is
made at a time)

MPI_THREAD_MULTIPLE: No restriction.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 35 / 109



MPI and OpenMP

State of current implementations
Implementation Level Supported Remarks

MPICH MPI_THREAD_MULTIPLE
OpenMPI MPI_THREAD_MULTIPLE Must be compiled with

–enable-mpi-threads
IBM BlueGene/Q MPI_THREAD_MULTIPLE
IBM PEMPI MPI_THREAD_MULTIPLE
BullxMPI MPI_THREAD_FUNNELED
Intel - MPI MPI_THREAD_MULTIPLE Use -mt_mpi
SGI - MPT MPI_THREAD_MULTIPLE Use -lmpi_mt

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 36 / 109



Hybrid Programming – Memory Savings

Why memory savings?

Hybrid programming allows optimizing code adequacy to the target architecture
(generally composed of shared-memory nodes [SMP] linked by an interconnection
network). The advantage of shared memory inside a node is that it is not
necessary to duplicate data in order to exchange them. Every thread can access
(read /write) SHARED data.

The ghost or halo cells, introduced to simplify MPI code programming using a
domain decomposition, are no longer needed within the SMP node. Only the
ghost cells associated with the inter-node communications are necessary.

The memory savings associated with the elimination of intra-node ghost cells can
be considerable. The amount saved largely depends on the order of the method
used, the type of domain (2D or 3D), the domain decomposition (in one or multiple
dimensions), and on the number of cores in the SMP node.

The footprint memory of the system buffers associated with MPI is not negligible
and increases with the number of processes. For example, for an Infiniband
network with 65,000 MPI processes, the footprint memory of system buffers
reaches 300 MB per process, almost 20 TB in total!

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 37 / 109



Hybrid Programming – Memory Savings

Example: 2D domain, decomposition in both directions

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 38 / 109



Hybrid Programming – Memory Savings

Extrapolation on a 3D domain

What are the relative memory savings obtained by using a hybrid version (Instead
of a flat MPI version) of a 3D code parallelized by a technique of domain
decomposition in its three dimensions? Let us try to calculate this in function of
numerical method (h) and the number SMP node cores (c).
We will assume the following hypotheses:

• The order of the numerical method h varies from 1 to 10.
• The number of cores c of the SMP node varies from 1 to 128.
• To size the problem, we will assume that we have access to 64 GB of shared-memory

on the node.

The simulation result is presented in the following slide. The isovalues 10%, 20%
and 50% are represented by the white lines on the isosurface.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 39 / 109



Hybrid Programming – Memory Savings
Extrapolation on a 3D domain

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 40 / 109



Hybrid Programming – Memory Savings

Memory savings on some real application codes (1)

Source: « Mixed Mode Programming on HECToR », A. Stathopoulos, August 22,
2010, MSc in High Performance Computing, EPCC

Target machine: HECToR CRAY XT6.
1856 Compute Nodes (CN), each one composed of two processors AMD 2.1GHz,
12 cores sharing 32 GB of memory, for a total of 44544 cores, 58 GB of memory
and a peak performance of 373 Tflop/s.

Results (the memory per node is expressed in MB):

Code Pure MPI version Hybrid version Memory
MPI prc Mem./ Node MPI x threads Mem./Node savings

CPMD 1152 2400 48 x 24 500 4.8
BQCD 3072 3500 128 x 24 1500 2.3
SP-MZ 4608 2800 192 x 24 1200 2.3
IRS 2592 2600 108 x 24 900 2.9
Jacobi 2304 3850 96 x 24 2100 1.8

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 41 / 109



Hybrid Programming – Memory Savings

Memory savings on some real application codes (2)

Source: « Performance evaluations of gyrokinetic Eulerian code GT5D on
massively parallel multi-core platforms », Y. Idomura and S. Jolliet, SC11

Executions on 4096 cores

Supercomputers used: Fujitsu BX900 with Nehalem-EP processors at 2.93 GHz
(8 cores and 24 GiB per node)

All sizes given in TiB

System Pure MPI 4 threads/process 8 threads/process
Total (code+sys.) Total (code+sys.) Gain Total (code+sys.) Gain

BX900 5.40 (3.40+2.00) 2.83 (2.39+0.44) 1.9 2.32 (2.16+0.16) 2.3

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 42 / 109



Hybrid programming – Memory Savings

Conclusion

The memory savings aspect is too often forgotten when we talk about hybrid
programming.

The potential savings, however, are very significant and could be exploited to
increase the size of the problems to be simulated!
There are several reasons why the differential between the MPI and hybrid
approaches will enlarge at an increasingly rapid rate for the next generation of
machines:

1. Multiplication in the total number of cores.
2. Rapid mutiplication in the number of available cores within a node as well as the

generalization of hyperthreading or SMT (the possibility of running multiple threads
simultaneously on one core).

3. General use of high-order numerical methods (computing costs decreasing, thanks
particularly to hardware accelerators).

The benefits will make the transition to hybrid programming almost mandatory...

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 43 / 109



Optimal Use of the Interconnection Network

How to optimise the use of the inter-node interconnection network

The hybrid approach aims to use the available hardware resources the most
effectively (shared memory, memory hierarchy, communication network).

One of the difficulties of hybrid programming is to generate a sufficient number of
communication flows in order to make the best use of the inter-node
communication network.

In fact, the throughputs of inter-node interconnection networks of recent
architectures are high (bidirectional throughput peak of 10 GB/s on Ada, for
example) and one data flow alone cannot saturate it; only a fraction of the network
is really used, the rest being wasted.

IDRIS has developed a small benchmark SBPR (Saturation Bande Passante
Réseau [Network Bandwidth Saturation]), a simple parallel ping-pong test aimed
at determining the number of concurrent flows required to saturate the network.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 44 / 109



Optimal Use of the Interconnection Network

MPI_THREAD_FUNNELED version of SBPR
MPI_THREAD_FUNNELED approach:

We increase the network bandwidth actually used by increasing the number of
MPI processes per node (i.e. we generate as many parallel communication flows
as there are MPI processes per node).

The basic solution, which consists of using as many OpenMP threads as there are
cores inside a node and as many MPI processes as the number of nodes, is not
generally the most efficient: The resources are not being used optimally, in
particular the network.

We look for the optimal ratio value between the number of MPI processes per
node and the number of OpenMP threads per MPI process. The greater the ratio,
the better the inter-node network flow rate, but the granularity is not as good. A
compromise has to be found.

The number of MPI processes (i.e. the data flow to be managed simultaneously)
necessary to saturate the network varies greatly from one architecture to another.

This value could be a good indicator of the optimal ratio of the number of MPI
processes/number of OpenMP threads per node of a hybrid application.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 45 / 109



Optimal Use of the Interconnection Network

MPI_THREAD_FUNNELED version of SBPR: Example on a 4-Core (BG/P) SMP Node

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 46 / 109



Optimal Use of the Interconnection Network

MPI_THREAD_FUNNELED version of SBPR: Example on a 4-Core (BG/P) SMP Node

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 47 / 109



Optimal Use of the Interconnection Network

MPI_THREAD_MULTIPLE version of SBPR
MPI_THREAD_MULTIPLE approach:

We increase the network bandwidth actually used by increasing the number of
OpenMP threads which participate in the communications.

We have a single MPI process per node. We look for the minimum number of
communication threads required to saturate the network.

MPI_THREAD_MULTIPLE version of SBPR: Example on a 4-Core (BG/P) SMP Node

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 48 / 109



Optimal Use of the Interconnection Network
MPI_THREAD_MULTIPLE version of SBPR: Example on a 4-Core (BG/P) SMP Node

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 49 / 109



Optimal Use of the Interconnection Network

SBPR: Results on Ada
2 links in //, FDR10 Infiniband, peak throughput 10 GB/s.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 50 / 109



Optimal Use of the Interconnection Network

SBPR: Results on Ada
2 links in //, FDR10 Infiniband, peak throughput 10 GB/s.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 51 / 109



Optimal Use of the Interconnection Network

SBPR: Results on Ada

With a single data flow, we use only a fraction of the inter-node network bandwidth.

In MPI_THREAD_FUNNELED mode, saturation of Ada inter-node network links
begins with only 2 parallel flows (i.e. 2 MPI processes per node).

In MPI_THREAD_MULTIPLE mode, saturation of Ada inter-node network links
appears with 16 parallel flows (i.e. 16 threads per node participating in
communications).

The 2 MPI_THREAD_FUNNELED and MPI_THREAD_MULTIPLE approaches are
well suited to Ada with an advantage for the first method.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 52 / 109



Optimal Use of the Interconnection Network

SBPR: Results on Turing
2 links in // (E direction of 5D torus), peak throughput 4 GB/s.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 53 / 109



Optimal Use of the Interconnection Network

SBPR: Results on Turing
2 links in // (E direction of 5D torus), peak throughput 4 GB/s.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 54 / 109



Optimal Use of the Interconnection Network

SBPR: Results on Turing

The use of only one data flow (i.e. one single communication thread or MPI
process per node) is sufficient to totally saturate the interconnection network
between two neighboring nodes.

The performances of the MPI_THREAD_MULTIPLE and MPI_THREAD_FUNNELED
versions are comparable on Turing.

The throughput reached is about 3.5 GB/s, which is around 85% of the peak
inter-node network bandwidth (for the E direction of the 5D torus).

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 55 / 109



Effects of a non-uniform architecture

Non-uniform architecture
Most modern supercomputers have a non-uniform architecture :

NUMA, Non Uniform Memory Access with the memory modules attached to
different sockets inside a given node.

Memory caches shared or not between different cores or groups of cores.

Network cards connected to some sockets.

Non-uniform network (for example with several layers of network switches) => see
also process mapping.

Effects

Performance of MPI communications are not the same for each core even inside a
node.

Process mapping is important inside and outside nodes.

Performance problems and optimisation are hard due to the complexity of the
modern architectures.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 56 / 109



Non-uniform architecture on Ada

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 57 / 109



Ping Pong on Ada

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 58 / 109



Presentation of the Benchmark

Description of the Multi-Zone NAS Parallel Benchmark

Developed by NASA, the Multi-Zone NAS Parallel Benchmark is a group of
performance test programs for parallel machines.

These codes use algorithms close to those used in certain CFD codes.

The multi-zone version provides three different applications with eight different
problem sizes.

This benchmark is used frequently.

The sources are available at the address:
http://www.nas.nasa.gov/Resources/Software/software.html.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 59 / 109

http://www.nas.nasa.gov/Resources/Software/software.html


Presentation of the Benchmark

Selected Application: BT-MZ
BT-MZ: block tridiagonal solver.

The zone sizes vary widely: poor load balancing.

The hybrid approach should improve the situation.

Selected Application: SP-MZ
SP-MZ: scalar pentadiagonal solver.

All the zone sizes are identical: perfect load balancing.

The hybrid approach should not bring any improvement.

Selected Problem Sizes

Class D: 1024 zones (and therefore limited to 1024 MPI processes), 1632 x 1216
x 34 grid points (13 GiB)

Class E: 4096 zones (and therefore limited to 4096 MPI processes), 4224 x 3456
x 92 grid points (250 GiB)

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 60 / 109



P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 61 / 109



P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 62 / 109



Analysis of Results

Analysis of Results: BT-MZ

The hybrid version is equivalent to the MPI for a not very large number of
processes.

When load imbalance appears in pure MPI (starting from 512 processes for class
D and from 2048 for class E), the hybrid version permits maintaining a very good
scalability by reducing the number of processes.

The limitation of 1024 zones in class D and of 4096 in class E limits the number of
MPI processes to 1024 and 4096 respectively; however, the addition of OpenMP
permits using many more cores while at the same time obtaining excellent
scalability.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 63 / 109



Analysis of Results

Analysis of Results: SP-MZ

This benchmark benefits in certain cases from the hybrid character of the
application even when there is not load imbalance.

The limitation of 1024 zones in class D and of 4096 in class E, limits the number of
MPI processes to 1024 and 4096 respectively; but the addition of OpenMP
permits using many more cores while, at that same time, obtaining an excellent
scalability.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 64 / 109



HYDRO Code

Presentation of the HYDRO Code (1)

This is the code used for the hands-on exercises of the hybrid course.

Hydrodynamics code, 2D-Cartesian grid, finite volume method, resolution of a
Riemann problem on the interfaces with a Godunov method.

For the last few years, in the framework of the IDRIS technology watch, this code
has served as a benchmark for new architectures, from the simple graphics card
to the petaflops machine.

New versions have been regularly developed over the years with new
implementations (new languages, new paradigms of parallelization).

1500 lines of code in its F90 monoprocessor version.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 65 / 109



HYDRO Code

Presentation of the HYDRO Code (2)

Today, there are the following hydro versions:
• Original version, F90 monoprocessor (P.-Fr. Lavallée, R. Teyssier)
• Monoprocessor C version (G. Colin de Verdière)
• MPI F90 parallel version (1D P.-Fr. Lavallée, 2D Ph. Wautelet)
• MPI C parallel version (2D Ph. Wautelet)
• OpenMP Fine-Grain and Coarse-Grain F90 parallel version (P.-Fr. Lavallée)
• OpenMP Fine-Grain C parallel version (P.-Fr. Lavallée)
• MPI2D-OpenMP Fine-Grain and Coarse-Grain F90 hybrid parallel version (P.-Fr.

Lavallée, Ph. Wautelet)
• MPI2D-OpenMP Fine-Grain hybrid parallel version C (P.-Fr. Lavallée, Ph. Wautelet)
• C GPGPU CUDA, HMPP, OpenCL version (G. Colin de Verdière)
• Pthreads parallel version C (D. Lecas)

Many other versions are under development: UPC, CAF, OpenACC, OpenMP4.5,
...

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 66 / 109



Results using 128 cores on Babel

Results for the nx = 10000, ny = 10000 domain

Time in (s) 32 cores 64 cores 128 cores
VN mode 53.14 24.94 12.40
DUAL mode 50.28 24.70 12.22
SMP mode 52.94 25.12 12.56

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 67 / 109



Results using 10 racks on Babel - Weak Scaling

Characteristics of the domains used for weak scaling

On 4096 cores, total number of points of the domain: 16 108

• 400000x4000: domain elongated in the first dimension
• 40000x40000: square domain
• 4000x400000: domain elongated in the second dimension

On 8192 cores, total number of domain points: 32 108

• 800000x4000: domain elongated in the first dimension
• 56568x56568: square domain
• 4000x800000: domain elongated in the second dimension

On 16384 cores, total number of points of the domain: 64 108

• 1600000x4000: domain elongated in the first dimension
• 80000x80000: square domain
• 4000x1600000: domain elongated in the second dimension

On 32768 cores, total number of points of the domain: 128 108

• 3200000x4000: domain elongated in the first dimension
• 113137x113137: square domain
• 4000x3200000: domain elongated in the second dimension

On 40960 cores, total number of points of the domain: 16 109

• 4000000x4000: domain elongated in the first dimension
• 126491x126491: square domain
• 4000x4000000: domain elongated in the second dimension

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 68 / 109



Results using 10 racks on Babel - Weak Scaling
Results for the domain elongated in the first dimension

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN mode 6.62 7.15 8.47 13.89 19.64
DUAL mode 6.21 6.46 6.75 7.85 8.75
SMP mode 6.33 6.38 6.72 7.00 7.22

Performances compared to the MPI
version

Elapsed execution time
P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 69 / 109



Results using 10 racks on Babel - Weak Scaling
Results for the square domain

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN mode 6.17 6.67 8.00 13.32 19.57
DUAL mode 6.17 6.14 6.52 7.64 8.56
SMP mode 6.24 6.19 6.33 6.57 7.19

Performances compared to the MPI
version

Elapsed execution time
P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 70 / 109



Results using 10 racks on Babel - Weak Scaling
Results for the domain elongated in the second dimension

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN mode 8.04 8.28 9.79 15.42 21.17
DUAL mode 8.22 8.30 8.20 9.44 12.08
SMP mode 7.33 8.58 8.61 8.43 8.64

Performances compared to the MPI
version

Elapsed execution time
P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 71 / 109



Results using 10 racks on Babel - Weak Scaling

Interpretation of results

The results of weak scaling, obtained by using up to 40960 computation cores, are
very interesting. Certain phenomena become visible with this high number of
cores.

The scalability of the flat MPI version shows its limits very rapidly. It has difficulty
scaling up to 16384 cores and then the elapsed time begins to explode.

As we expected, the DUAL hybrid version, but even more the SMP version,
behave very well up to 32768 cores with nearly constant elapsed times. On 40960
cores, the SMP version shows a very slight additional cost; on the DUAL version
the additional cost becomes significant.

In weak scaling, the scalability limit of the flat MPI version is 16384 cores, that of
the DUAL version is 32768 cores, and that of the SMP version has not yet been
reached on 40960 cores!

On 40960 cores, the SMP hybrid version is between 2.5 and 3 times faster than
the pure MPI version.

It is clear that scaling (here over 16K cores) with this type of parallelization method
(i.e. domain decomposition), requires hybrid parallelization. It is not enough to use
MPI alone !

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 72 / 109



Results using 10 racks on Babel - Strong Scaling
Results for the nx = 400000, ny = 4000 domain

Time(s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN Mode 6.62 4.29 4.44 8.30 13.87
DUAL Mode 6.21 3.34 2.03 2.40 3.13
SMP Mode 6.33 3.18 1.75 1.24 1.29

Performances compared to the MPI
version

Scalability up to 40960 cores
P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 73 / 109



Results using 10 racks on Babel - Strong Scaling
Results for the nx = 40000, ny = 40000 Domain

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN Mode 6.17 3.54 3.10 8.07 13.67
DUAL Mode 6.17 3.10 1.88 2.35 3.12
SMP Mode 6.24 3.10 1.63 1.20 1.26

Performances compared to the MPI
version

Scalability up to 40960 cores
P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 74 / 109



Results using 10 racks on Babel - Strong Scaling
Results for the nx = 4000, ny = 400000 Domain

Time (s) 4096 cores 8192 cores 16384 cores 32768 cores 40960 c.
VN Mode 8.04 4.31 4.52 8.26 13.85
DUAL Mode 8.22 3.96 2.22 2.46 3.34
SMP Mode 7.33 3.94 1.91 1.29 1.32

Performances compared to the MPI
version

Scalability up to 40960 cores
P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 75 / 109



Results using 10 racks on Babel - Strong Scaling

Interpretation of results

The results of strong scaling, obtained by using up to 40960 computation cores,
are very interesting. Here again, new phenomena emerge with this high number of
cores.

The scalability of the flat MPI version shows its limits very quickly. It has difficulty
to scale up to 8192 cores and then it begins to collapse.

As we expected, the DUAL hybrid version, but even more the SMP version,
behave very well up to 16384 cores, with a perfectly linear acceleration. The SMP
version continues to scale (non-linearly) up to 32768 cores; beyond this, the
performances are no longer improved.

In strong scaling, the scalability limit of the flat MPI version is 8192 cores,
whereas that of the SMP hybrid version is 32768 cores. We find here a factor of 4
which corresponds to the number of cores in the BG/P node !

The best hybrid version (32768 cores) is between 2.6 and 3.5 times faster than the
best pure MPI version (8192 cores).

It is clear that with this type of parallelization method (i.e. domain decomposition),
scaling (here over 10K cores) requires recourse to hybrid parallelization. It is not
enough to use MPI alone!

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 76 / 109



Results on Two Vargas Nodes

Results for the nx = 100000, ny = 1000 domain

MPI x OMP Time (s)
per node Mono 64 cores
32 x 1 361.4 7.00
16 x 2 361.4 6.11
8 x 4 361.4 5.75
4 x 8 361.4 5.61
2 x 16 361.4 5.86
1x 32 361.4 6.24

The hybrid version is always more efficient than the pure MPI version.

The maximum gain is superior to 20% for the 8MPIx4OMP, 4MPIx8OMP and
2MPIx16OMP distributions.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 77 / 109



Results on Two Vargas Nodes

Results for the nx = 10000, ny = 10000 Domain

MPI x OMP Time(s)
per node Mono 64 cores
32 x 1 449.9 6.68
16 x 2 449.9 6.03
8 x 4 449.9 5.64
4 x 8 449.9 5.82
2 x 16 449.9 5.87
1 x 32 449.9 6.31

The hybrid version is always more efficient than the pure MPI version.

The maximum gain is on the order of 20% for the 8MPIx4OMP distribution.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 78 / 109



Results on Two Vargas Nodes

Results for the nx = 1000, ny = 100000 domain

MPI x OMP Time (s)
per node Mono 64 cores
32 x 1 1347.2 8.47
16 x 2 1347.2 7.75
8 x 4 1347.2 6.92
4 x 8 1347.2 7.13
2 x 16 1347.2 7.84
1 x 32 1347.2 8.53

The hybrid version is always more efficient than the pure MPI version.

The maximum gain is on the order of 20% for the 8MPIx4OMP ditsribution.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 79 / 109



Results on Two Vargas Nodes

Interpretation of Results

Whatever the domain type, the flat MPI version and the hybrid version with only
one MPI process per node systematically give the least efficient results.

The best results are obtained on the hybrid version with (a) a distribution of eight
MPI processes per node and four OpenMP threads per MPI process for the two
last test cases, and (b) a distribution of four MPI processes per node and sixteen
OpenMP threads per MPI process for the first test case.

We find here a ratio (i.e. number of MPI processes/number of OpenMP threads)
close to the one obtained during the interconnection network saturation tests
(saturation beginning with eight MPI processes per node).

Even with a modest size in terms of the number of cores used, it is interesting to
note that the hybrid approach prevails each time, sometimes even with significant
gains in performance.

Very encouraging and shows that there is a real interest in increasing the number
of cores used.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 80 / 109



Conclusions on the MPI/OpenMP Hybrid Approach

Conclusions

A sustainable approach, based on recognized standards (MPI and OpenMP): It is
a long-term investment.
The advantages of the hybrid approach compared to the pure MPI approach are
many:

• Significant memory savings
• Gains in performance (on a fixed number of execution cores) due to better code

adaptation to the target architecture
• Gains in terms of scalability: Permits pushing the limit of code scalability with a factor

equal to the number of cores of the shared-memory node

These different gains are proportional to the number of cores in the
shared-memory node, a number which will increase significantly in the short term
(general use of multi-core processors)

The only viable solution able to take advantage of the massively parallel
architectures of the future (multi-peta, exascale, ...).

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 81 / 109



Tools

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 82 / 109



SCALASCA

Description
SCALASCA is a graphical tool for performance analysis of parallel applications.
Principal characteristics:

Support for MPI and multithreaded/OpenMP applications

Profiling and tracing modes (limited to MPI_THREAD_FUNNELED for traces)

Identification/automatic analysis of common performance problems (using trace
mode)

Unlimited number of processes

Support for hardware counters (via PAPI)

Use

Compile your application with skin f90 (or other compiler).

Execute with scan mpirun. Use the option -t for the trace mode.

Visualize the results with square.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 83 / 109



SCALASCA

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 84 / 109



TAU

Description
TAU is a graphical tool for performance analysis of parallel applications. Prinicipal
characteristics:

Support for MPI and multithreaded/OpenMP applications

Profiling and tracing modes

Unlimited number of processes

Support for hardware counters (via PAPI

Automatic instrumentation of loops

Memory allocations track

I/O track

Call tree

3D visualization (useful for comparing processes/threads to each other)

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 85 / 109



TAU

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 86 / 109



TotalView

Description
TotalView is a graphical debugging tool for parallel applications. Key features:

Support for MPI and multithreaded/OpenMP applications

Support for C/C++ and Fortran95

Integrated memory debugger

Maximum number of processes (depending on the license)

Use

Compile your application with -g and a not very aggressive level of optimisation
ion.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 87 / 109



TotalView

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 88 / 109



Hands-on Exercises

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 89 / 109



TP1 — Hybrid MPI and OpenMP — Global synchronization

Objective
Synchronize all of the OpenMP threads located on the different MPI processes.

Statement
You are asked to complete the barrier_hybride.f90 file so that all the OpenMP threads
on the different MPI processes would be synchronized during a call to the
barrierMPIOMP subroutine.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 90 / 109



TP2 — Hybrid MPI and OpenMP — Parallel PingPong

Objective
Measure the network sustained bandwidth between two nodes.

Statement
You are asked to write a hybrid parallel PingPong code for measuring the network
sustained bandwidth between two nodes.

In the first version, you will use the MPI_THREAD_FUNNELED level of thread
support (the application can launch several threads per process but only the main
thread can make MPI calls). In this case, the number of parallel communication
flows will be equal to the number of MPI processes per node.

In the second version, you will use the MPI_THREAD_MULTIPLE level of thread
support (entirely multithreaded without restrictions) with one MPI process per
node. In this case, the number of parallel communication flows will be equal to the
number of OpenMP threads which participate in the communications.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 91 / 109



TP3 — Heat3D, from MPI to hybrid MPI and OpenMP version

Objectif
Parallelize an application using MPI and OpenMP.

Statement
You are asked to start with the Heat3D MPI parallel version application.

1. You should implement a new level of parallelism by adding OpenMP directives to
construct a hybrid parallel version using the MPI_THREAD_FUNNELED level of
thread support.

2. Modify the MPI_THREAD_FUNNELED version to use the MPI_THREAD_MULTIPLE
level of thread support so that you can parallelize the MPI communications.

3. Compare the performances of the MPI, hybrid MPI_THREAD_FUNNELED and
hybrid MPI_THREAD_MULTIPLE versions.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 92 / 109



TP4 — HYDRO, from MPI to hybrid MPI and OpenMP version

Objective
Parallelize an application using MPI and OpenMP.

Statement
You are asked to start with the HYDRO MPI parallel version application.

1. You should implement a new level of parallelism by adding OpenMP directives to
construct a hybrid parallel version but with only one parallel OpenMP region.

2. Compare the hybrid performance obtained with that of the MPI version. Does it
have good scalability?

3. What improvements can be made to obtain better performances? Tests and
compare.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 93 / 109



Appendices

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 94 / 109



Optimal Use of the Interconnection Network

MPI_THREAD_FUNNELED version of SBPR: Results on Vargas
4 links in //, DDR Infiniband, peak throughput 8 GB/s.

MPI x OMP Total throughput (MB/s) Total throughput (MB/s) Total throughput (MB/s)
per node Message of 1 MB Message of 10 MB Message of 100 MB
1 x 32 1016 1035 959
2 x 16 2043 2084 1803
4 x 8 3895 3956 3553
8 x 4 6429 6557 5991
16 x 2 7287 7345 7287
32 x 1 7412 7089 4815

Interpretations

With a single data flow, we only use one-eighth of the inter-node network
bandwidth.

Saturation of Vargas inter-node network links begins to appear at 8 parallel flows
(i.e. 8 MPI processes per node).

There is total saturation with 16 parallel flows (i.e. 16 MPI processes per node).

With 16 flows in parallel, we obtain a throughput of 7.35 GiB/s, or more than 90%
of the available peak inter-node network bandwidth!

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 95 / 109



Optimal Use of the Interconnect Network

MPI_THREAD_FUNNELED version of SBPR: Results on Babel
Peak throughput: 425 MB/s

MPI x OMP Total throughput (MB/s) Total throughput (MB/s) Total throughput (MB/s)
par node Message of 1 MB Message of 10 MB Message of 100 MB
SMP (1 x 4) 373.5 374.8 375.0
DUAL (2 x 2) 374.1 374.9 375.0
VN (4 x 1) 374.7 375.0 375.0

Interpretations

The use of a single data flow (i.e. one MPI process per node) is sufficient to totally
saturate the interconnection network between two neighboring nodes.

The throughput rate reached is 375 MB/s, or 88% of the peak inter-node network
bandwidth.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 96 / 109



Optimal Use of the Interconnect Network
MPI_THREAD_MULTIPLE version of SBPR: Results on Vargas
4 links in // Infiniband DDR, peak throughput 8 GB/s.

MPI x OMP Total throughput (MB/s) Total throughput (MB/s) Total thrpt (MB/s)
per node Message of 1 MB Message of 10 MB Message of 100 MB
1 x 32 (1 flow) 548.1 968.1 967.4
1 x 32 (2 flows) 818.6 1125 1016
1 x 32 (4 flows) 938.6 1114 1031
1 x 32 (8 flows) 964.4 1149 1103
1 x 32 (16 flows) 745.1 1040 1004
1 x 32 (32 flows) 362.2 825.1 919.9

Interpretations

The MPI_THREAD_MULTIPLE version has a very different performance on Vargas
(compared to the MPI_THREAD_FUNNELED version): The throughput does not
increase with the number of flows in parallel but remains constant.

Whether there is only one or several flows, we always use just one-eighth of the
inter-node network bandwidth. As a result, it is never saturated!

This MPI_THREAD_MULTIPLE approach (i.e. several threads communicating
simultaneously within the same MPI process) is, therefore, absolutely unsuitable
to the Vargas machine; it is better to choose the MPI_THREAD_FUNNELED
approach.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 97 / 109



Optimal Use of the Interconnect Network

MPI_THREAD_MULTIPLE version of SBPR: Results on Babel
Peak throughput 425 Mo/s

MPI x OMP Total throughput (MB/s) Total throughput (MB/s) Total throughput (MB/s)
per node Message of 1 MB Message of 10 MB Message of 100 MB
SMP (1 flow) 372.9 374.7 375.0
SMP (2 flows) 373.7 374.8 375.0
SMP (4 flows) 374.3 374.9 375.0

Interpretations

The performances of the MPI_THREAD_MULTIPLE and MPI_THREAD_FUNNELED
versions are comparable on Babel.

The use of only one data flow (i.e. one single communication thread per node) is
sufficient to totally saturate the interconnection network between two neighboring
nodes.

The throughput reached is 375 MB/s, which is 88% of the peak inter-node network
bandwidth.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 98 / 109



Case Study: Poisson3D

Presentation of Poisson3D
Poisson3D is an application which resolves Poisson’s equation on the cubic
domain[0,1]x[0,1]x[0,1] using a finite difference method and a Jacobi solver.

∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 = f (x , y , z) in [0, 1]x[0, 1]x[0, 1]

u(x , y , z) = 0. on the boundaries
f (x , y , z) = 2yz(y − 1)(z − 1) + 2xz(x − 1)(z − 1) + 2xy(x − 1)(y − 1)
uexact(x , y) = xyz(x − 1)(y − 1)(z − 1)

Solver
The discretization is made on a regular grid in the three spatial directions (step
h = hx = hy = hz ).
The solution is calculated using this Jacobi solver where the solution to the n + 1
iteration is calculated from the immediately preceding n iteration solution.

un+1
ijk =

1
6
(un

i+1jk + un
i−1jk + un

ij+1k + un
ij−1k + un

ijk+1 + un
ijk−1 − h2fijk )

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 99 / 109



Case Study: Poisson3D

3D domain decomposition
The physical domain is split into the three spatial directions.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 100 / 109



Case Study: Poisson3D on Babel

Versions
Four different versions have been developed:

1. Pure MPI version without computation-communication overlap

2. Hybrid MPI + OpenMP version without computation-communication overlap

3. Pure MPI version with computation-communication overlap

4. Hybrid MPI + OpenMP version with computation-communication overlap

OpenMP versions are all using a fine-grain approach.

Babel
All tests have been run on Babel which was a IBM Blue Gene/P system consisting of
10,240 nodes each with 4 cores and 2 GiB of memory.

Interesting Phenomena

Cache effects

Derived datatypes

Process mapping

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 101 / 109



Case Study: Poisson3D on Babel

Cartesian topology and cache use
Version Topology Time L1 read DDR read Torus send

(s) (TiB) (TiB) (GiB)
MPI with overlap 16x4x4 52.741 11.501 14.607 112.873
MPI with overlap 4x16x4 39.039 11.413 7.823 112.873
MPI with overlap 4x4x16 36.752 11.126 7.639 37.734

Running on 256 Blue Gene/P cores with a size of 5123.

The way the Cartesian topology is split has a major effect.

The phenomenon appears to be due to cache effects. In 5123, The u and u_new
arrays require 8 MiB/core.

Depending on the topology, the accesses to the central memory are very different
(between 7.6 TiB and 18.8 TiB in read). The elapsed time appears strongly
correlated with these accesses.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 102 / 109



Case Study: Poisson3D

Sub-domain form (5123)

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 103 / 109



Case Study: Poisson3D on Babel

Cache effects

The effect of the Cartesian topology shape is explained by the layout in the
caches.

The u and u_new tables are split in the 16x4x4 topology into (34, 130, 130) and in
the 4x16x4 topology into (130, 34, 130).

In the computation of the exterior domain, the computation of the i = constant
faces results in the use of a single u_new element per line of the L3 cache (which
contains 16 doubles).

The i = constant faces are four times smaller in 4x16x4 than in 16x4x4; this
explains a big part of the time difference.

To improve the use of caches, we can calculate more i = constant plans in the exterior
domain than before.

Topology Plans Time (s)
4x16x4 1 39.143
4x16x4 16 35.614

Topology Plans Time (s)
16x4x4 1 52.777
16x4x4 16 41.559

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 104 / 109



Case Study: Poisson3D on Babel

Cache effects on the derived datatypes: analysis
The hybrid version is almost always slower than the pure MPI version.

For an equal number of cores, the communications take twice as much time in the
hybrid version (2563 on 16 cores).

This loss of time comes from sending messages which use the most
non-contiguous derived datatypes (plans YZ).

The construction of these derived datatypes uses only one single element per
cache line.

In the hybrid version, the communication and the filling of the derived datatypes is
made by one single thread per process.

⇒ One single flow in memory read (or write) per computation node. The prefetch
unit is capable of storing only two lines of L3 cache per flow.

In the pure MPI version, four processes per node read or write simultaneously (on
faces four times smaller than on the hybrid version).

⇒ Four simultaneous flows which result in faster filling

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 105 / 109



Case Study: Poisson3D on Babel

Cache effects on the derived datatypes: solution

Replacement of the derived datatypes by manually-filled arrays of 2D faces.

The copying towards and from these faces is parallelizable in OpenMP.

The filling is now done in parallel as in the pure MPI version.

Results of some tests (5123):

MPI std MPI no deriv MPI+OMP std MPI+OMP no deriv
64 cores 84.837s 84.390s 102.196s 88.527s
256 cores 27.657s 26.729s 25.977s 22.277s
512 cores 16.342s 14.913s 16.238s 13.193s

Improvements also appear in the pure MPI version.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 106 / 109



Case Study: Poisson3D on Babel

MPI communications
The preceding tests show the quantities of data sent on the 3D torus to be variable in
function of the topology. The causes are:

The messages sent between processes which are inside a compute node are not
included. A topology in which the processes are well placed, therefore, have a
diminished quantity of sent data on the network.

In addition, the measurements include the transit traffic through each node. A
message sent to a process located on a node non-adjacent to that of the sender
will therefore be measured many times (generating real traffic and producing
contention on the network links).

Version Topology Time L1 read DDR read Torus send
(s) (TiB) (TiB) (GiB)

MPI without overlap 16x4x4 42.826 11.959 9.265 112.873
MPI with overlap 8x8x4 45.748 11.437 10.716 113.142
MPI with overlap 16x4x4 52.741 11.501 14.607 112.873
MPI with overlap 32x4x2 71.131 12.747 18.809 362.979
MPI with overlap 4x16x4 39.039 11.413 7.823 112.873
MPI with overlap 4x4x16 36.752 11.126 7.639 37.734

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 107 / 109



Case Study: Poisson3D on Babel

Comparison: Optimized versus original versions (without overlap)

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 108 / 109



Case Study: Poisson3D on Babel

Observations

The Cartesian topology has an important effect on the performances because of
the way in which the caches are re-used.

The Cartesian topology effects the volume of communication and, therefore, the
performances.

The use of derived datatypes has an impact on memory access.

Hybrid versions are (slightly) more performant than pure MPI versions as long as
the work arrays does not hold in the L3 caches.

Achieving good performances in the hybrid version is possible, but it is not always
easy.

Important gains can be achieved (also in the pure MPI version).

A good understanding of the application and of the hardware architecture is
necessary.

The advantage of the hybrid approach is not obvious here (beyond a reduction in
memory usage), probably because pure MPI Poisson3D has already an excellent
scalability and because a fine-grain OpenMP approach was used.

P.-Fr. Lavallée — R. Lacroix (IDRIS / LA) Hybrid Programming 29 November 2018 109 / 109


	Main Part
	Preamble
	Introduction
	Moore's Law and Electric Consumption
	The Memory Wall
	As for Supercomputers
	Amdahl's Law
	Gustafson-Barsis' Law
	Consequences for users
	Evolution of Programming Methods
	Presentation of the Machines Used

	Hybrid programming
	Definitions
	Reasons for Hybrid Programming
	Applications Which Can Benefit From Hybrid Programming
	MPI and Multithreading
	MPI and OpenMP
	Adequacy to the Architecture: Memory Savings
	Adequacy to the Architecture: the Network Aspect
	Effects of a non-uniform architecture
	Case Study: Multi-Zone NAS Parallel Benchmark
	Case Study: HYDRO

	Tools
	SCALASCA
	TAU
	TotalView

	Hands-on Exercises
	TP1 — Hybrid MPI and OpenMP — Global synchronization
	TP2 — Hybrid MPI and OpenMP — Parallel PingPong
	TP3 — Heat3D, from MPI to hybrid MPI and OpenMP version
	TP4 — HYDRO, from MPI to hybrid MPI and OpenMP version

	Appendices
	SBPR on older architectures
	Case Study: Poisson3D



