Deep Learning Optimized on Jean Zay

Profiler PyTorch
@ IDRIS

DLO-JZ course
Commented slides

Author: Myriam Peyrounette
Updated February 2024



PyTorch Profiler

In this chapter, we will learn how to use the profiler implemented in PyTorch. We will
visualize the traces generated with TensorBoard.



PyTorch Profiler

* We use a profiler to monitor an execution.
* It allows us to know the time and memory consumed by each part of the code.

* The results returned by the profiler point to the weaknesses of our code and tell us which parts
we should optimize in priority.

* The profiler is a wrapper which records various information during the execution of the code.

This could be slowed down depending on the requested traces. We usually monitor only a few
A training steps.

with prof:
for epoch in range(0,args.epochs):
for i, (images, labels) in enumerate(train_loader):

L]
prof.step()




PyTorch Profiler

from torch.profiler import profile, tensorboard_trace_handler, ProfilerActivity, schedule

prof = profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDAl, #
schedule=schedule(wait=1, warmup=1, active=5, repeat=1), #
on_trace_ready=tensorboard_trace_handler(logname), #
profile_memory=True, #
record_shapes=False, #
with_stack=False, #
with_flops=False) #

Nouoh wWwN

1. We monitor the activity both on CPUs and GPUs.

2. We ignore the first step (wait=1) and we initialize the monitoring tools on one step (warmup=1). We activate
the monitoring on 5 steps (active=5) and repeat the pattern only once (repeat=1).

We store the traces in a TensorBoard format (. json).

We profile the memory usage.

We don’t record the input shapes of the operators.

We don’t record call stacks (information about the active subroutines).

We don’t request the FLOPs estimate of the tensor operations.

N o ok

The different input arguments of the profiler are detailed here.

If record_shapes is activated, a new column containing the operators input shapes
appears in the Operator View tab (select “Group By: Operator + Input Shape”).

By activating the with_stack option, call stacks are recorded and displayed in the
Operator View tab (last column). This also improves the timeline readability. In return,
it significantly increases the size of the traces (about x10) and more resources are
required to keep the visualization fluent.



TP2_2 : Profiler PyTorch

* Implement the PyTorch profilerin dlojz. py.
* Visualize the trace with TensorBoard and draw
conclusions about possible optimizations.




TP2_2 : Profiler PyTorch

TensorBoard Plugin support has been deprecated, so some of these functions may not work as previously. Please take a look
at the replacement, HTA.

Holistic Trace Analysis: https://hta.readthedocs.io/en/latest/

* Analyses PyTorch Profiler traces.

* Less user-friendly than TensorBoard Plugin. A TR Ao (A A = G L 25
* More thorough? Kernel Type Percentage Acrss Al Raks

time_spent_df

rankidle_time{ns) compute_time(ns) non_compute_time(ns) kernel_time(ns) idie_time_petg compute_time_pctg non_compute_time_petg

o o ssoe 56651 884850 2083570 2735 2030 451
1o am so0759 1008227 2082757 22 203 4040
2 2 smo sosa86 124788 2089781 1535 2035 5531
3 3 s 0137 1154491 2030274 1351 27 678
s 4 aesm s9a0i0 1021824 2038697 2084 203 s012
s s s eorsst 112861 2083114 1669 2050 san
s & o s08029 1047787 2083856 1908 2040 55
77 s 599358 79022 2083210 237 2048 a5

The TensorBoard plugin torch_tb_profiler is deprecated. The developers
redirect people to the HTA (Holistic Trace Analysis) library.

This one is also based on the traces generated by the PyTorch profiler.

With HTA, traces can be analyzed using a series of tables (DataFrames) or plotting
functions.

We think the HTA library is more difficult to grasp than the TensorBoard plugin.

We think the TensorBoard plugin is still operational for now despite some minor bugs.


https://hta.readthedocs.io/en/latest/

TP2_2: Profiler Overview

Tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

| 4 . .
Configuration GPU Summary @
Number of Worker(s) 1 GPU 0:
Device Type GPU Name
Memory

Compute Capability

GPU Utilization

Est. SM Efficiency

Est. Achieved Occupancy

79.15 GB
8.0
4.94 %

4.86 %
30.76 %

Type and memory
capacity of the GPU

% of time spent
with an active GPU

% of active SMs

on an SM

% of active wraps

The Overview tab gives information on using the GPU up to a very fine granularity

Execution Summary
Category Time Duration (us)
NVIDIA A100-SXM4-80GB Average Step Time 2,721,884
Kernel 134,325
Memcpy 13,314
Memset 713
‘Communication 110
Runtime 0
DataLoader 2,563,866
CPU Exec 6,458
Other 3,008

Link to image

(at the scale of Streaming Multiprocessor wraps).

The functions called during the execution are sorted by categories and the

percentage of time spent in each category is calculated.

Here, the Dataloader is the most time-consuming category, far ahead of the other

categories.

Percentage (%)

100

4.93

0.49

0.03

0

0

94.19

0.24

0.11

Streaming Multiprocessor

@

@ Kemel

@ Memepy

® Memset

@ Communication
@ Runtime

@ DataLoader

® CPU Exec

@ Other


https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

TP2_2: Profiler Step Time @

5,000,000
4,000,000
3,000,000

2,000,000

Step Time (microseconds)

1,000,000

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Step

I Kernel [ Memcpy [0 Memset [l Communication [l Runtime [l DatalLoader 12 p

Performance Recommendation

« This run has high time cost on input data loading. 94.2% of the step time is in DatalLoader. You could try to set num_workers on DatalLoader's construction and

+ GPU 0 has low utilization. You could try to increase batch size to improve. Note: Increasing batch size may affect the speed and stability of model convergence.

We are visualizing the time taken by each function category, by step.

The PyTorch profiler is capable of furnishing recommendations for possible
optimizations of the code.

Here, the time is principally spent in the Dataloader at each iteration.

Comment: In general, we ignore the first iteration during which many functionalities
are initialized because the time here is not representative.



TP2_2: Profiler Operator View

Device Self Time (us) (3)

A

B

Host Self Time (us) (3)

&)

>

@ aten::convelution_backward

@ aten::cudnn_convolution

® aten:cudnn_batch_norm_backward

@ aten:icopy_

@ aten::cudnn_batch_norm

@ aten:ithreshold_backward

@ aten:add_

@ aten::clamp_min

@ aten::add

@ aten:max_pool2d_with_indices_
backward

@ aten::_local_scalar_dense
@ aten::copy_

© aten::cat

@ aten::div

@ aten::empty

@ aten::div_

@ aten:empty_strided

@ aten::sub_

@ aten:_to_copy

@ aten::convolution_backward

Device Total Time (us) (3

Host Total Time (us) ()

A

\ &

@

@ autograd: engine: evaluate_function
ConvolutionBackwardo

@ atenz:convad

® aten:z:copy

@ aten::convolution_backward

@ ConvolutionBackwardo

@ atenz:cudnn_convelution

@ aten:z:_convolution

@ aten::convolution

@ aten:z:cudnn_batch_norm_backward

@ CudnnBatchNormBackward0

@ atenzitem

@ aten::_local_scalar_dense
@ atenzzcopy

@ aten::to

@ aten::_to_copy

@ aten::clone

@ aten::cat

@ aten::stack

@ aten::contiguous

@ aten:div

Inthe Operator View tab, we visualize the PyTorch operators which take the most
time, on GPU (Device) and on CPU (Host).

Certain operators call other operators. During the Self Time calculation, we ignore
the time passed in the child operators. We take this into account during the Total

Time calculation.

At the time of this writing, a bug prevents the upper “Device” part of this view from

being displayed.



TP2_2: Profiler Kernel View @

@ All kernels O Top kernels to show

Total Time (us) @ Tensor Cores Utilization @

@ Not Using Tensor Cores
@ Using Tensor Cores

@ void cudnn::batchnorm_bwtr_...

il
\\:" 3% @ void at:native::vectorized_ele. ..
- @ void cudnn::batchnorm_fwtr_...
4 o @ void at:native:vectorized_ele...
= @ void at::native::vectorized_ele. ..

@ void cutlass_cudnn::Kernel<c...

8.6% @ void cudnn::batchnorm_bwtr_...
@ void cutlass_cudnn::Kernel<c...

‘ @ ampere_ip16_s16816gemm_f...

7

@ void at::native::(anonymous n...
@ void cudnn::batchnorm_fwtr_...

&

7

18 W

10

In the Kernel View tab, we visualize the information at the kernel level.
On the left, we visualize the CUDA functions which take the most time.
On the right, we visualize the percentage of time spent on the TensorCores. If the

TensorCores are used very little or not at all, this could indicate that the mixed
precision was not correctly implemented.



TP2_2: Profiler Trace

@

[[os [10s |20s [30s [40s [50s

v python (pid 3500539): CPU L ]
-1134934272

v thread 3500539 (python) Pr.. Pr.. Profile.. Prof.. Profile.. Prof. Prof.. Prof.. Prof.. Profiler.. Profi.. Profi.. Profi.. Profi.. Profi.. Profi.. Profi.. Profi..

enu enu enumer... enu... enumer... enu... enu... e.. enu. enumer... e. .. e.. (- €. B, enu... €.
CPU <

v thread 3500627 (python)

¥ python (pid 0): GPU 0 E ]
GPU 0 Est. SM Efficiency:

GPU 0 Utilization: GPU

stream 7

H—l
1 step

In the Trace tab, the profiler furnishes an execution timeline. We differentiate the
CPU activity from the GPU activity.



TP2_2: Profiler Trace (1 step)

@

100 ms [17.500 ms 18000 ms 18,500 ms
¥ python (pid 3500539): CPU
-1134934272
v thread 3500539 (python) ROIEEETG
enumerate(DataLoader)#_singleProcessDataLoaderlter._next__ at...
r

v thread 3500627 (python)

¥ python (pid 0): GPU 0
GPU 0 Est. SM Efficiency:

GPU 0 Utilization:

stream 7

GPU idle

By zooming in on an iteration, we note that the GPU is inactive most of the time.



TP2_2: Profiler Trace (1 step - GPU) @

[19.500 ms [19.550 ms 19,600 ms
¥ python (pid 3500539): CPU
-1134934272
v thread 3500539 (python) - RS )
aten:to Distribut... atenzitem €
aten::_... aten::_local_scalar_dense
aten:copy_ cudaMemcpyAsync
aten:copy_
cudam...
v thread 3500627 (python)
¥ python (pid 0): GPU 0
GPU 0 Est. SM Efficiency:
GPU 0 Utilization:
stream 7 Memcpy... Wie.
. S —
Y o~
forward backward 13

By zooming in on the part of the iteration during which the GPU is active, we
differentiate the forward and backward steps.



TP2_2: Profiler Trace (1 step - CPU)

[0oms [17.500 ms 18000 ms 1500 ms 19,000 ms
¥ python (pid 3500539): CPU
-1134934272
v thread 3500539 (python) "'“”‘e's";”
enumerate(DataLoader)# SingleProcessDataloaderlter._next_

|18:400 ms |18:450 ms |18,500 ms

v thread 3500627 (python)

ProfilerStep#7
enumerate(DataLoader)#_SingleProcessDataLoaderiter. _next_

¥ python (pid 0): GPU 0
GPU 0 Est. SM Efficiency: ‘

GPU 0 Utilization:

stream 7

reading an image (IO)

By zooming in on the part of the iteration during which the CPU is active, we see the
call to the DatalLoader. Itis at this moment that the reading of input images takes

place.

These “lO calls” are not displayed when num_workers>0.



TP2_2: Profiler Distributed

Computation Communication overview @

%

Synchronizing Communication Overview ()

1,200,000 250,000

e - - - - 200,000
e I

600,000

150,000

100,000
400,000

200,000 . — -

o

]
node1_26008 node1_26009 noce1_26010 node1_26011 noce1_26006 node1_26009 node1_26010 node1_26011

I Computation M Overiapping W Communicat ton I Otner I 0ata Transfer Time [ Synchonizing Time

Image from the tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

The Distributed tab is relevant when you work with multiple GPUs.

We see the computation/communication ratio on the left hand side and the
communication efficiency on the right hand side.

These results allow us to determine if the workload is properly balanced between the
processes.

At the time of this writing, a bug prevents the “Distributed” tab from being displayed
when using multiple GPUs.

15


https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

TP2_2: Profiler Memory View (GPU)

Device
GPUO ~
Peak Memory Usage: 14018.4MB
20,000
@ 15,000
s
@
g
g 10,000
=
£
s 5,000
—l f——
5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000
H—/ Time (ms)
GPU 1d1e —— Allocated (MB) —— Reserved (MB)

In the Memory View tab, we see the GPU memory usage over time.

We distinguish here also the periods during which the GPU is inactive.



TP2_2: Profiler Memory View (CPU)

Device
CPU -

Peak Memory Usage: 544.5MB
600
500
N
2 400
@
®
° 300
§
g 200
=

100

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000
Time (ms)
—— Allocated (MB) —— Reserved (MB)

The CPU memory usage over time is also shown.

We distinguish a progressive loading of the memory at each iteration during the
reading of images, a peak during the data transformation, then a significant
deallocation when the batch is transferred from CPU memory to GPU memory.

Note: This view is not available anymore when num_workers>0.



TP2_2: Profiler PyTorch (conclusion)

@ Kemel

@ Memcpy

® Memset

@ Communication
@ Runtime

® Dataloader

@ CPU Exec

@ Cther

After seeing the traces, it is obvious that the optimization
efforts need to concentrate on the Dataloader.

18



Deep Learning Optimized on Jean Zay

Optimization of the data preprocessing

@ IDRIS () OOO



Optimization of the data
preprocessing

Data preprocessing with DatalLoader «

Optimization of the DataLoader «

20



Data preprocessing with DatalLoader

1/0

CPU to GPU
transfers
—p GPU

S — v
e /‘ —
— < =9
Discovering the Index Distributing Gathering Loading and Processing Training
database shuffling data per transforming batches ahead
structure batch the data of time on
a L) | [ [
ength, type,...) ‘ P ‘ Pad CPU ‘ N
| \ | S~—— ,
} 1 iteration over batches 1
| | iteration over epochs |
Dataset DistributedSampler Dataloader Distributed
DataParallel

Details of the data preprocessing workflow during a training.

21

In this section, we will focus on the steps managed by the Dataloader.



Data preprocessing with DatalLoader

* Dataloader (data preprocessing)

@

data_loader

from torch.utils.data import Dataloader
# initialize the parallel environment -> init_process_group()

# duplicate the model - DistributedDataParallel

SLURM_NTASKS
# distribute the input data - DistributedSampler

# preprocess data
batch_size_per_gpu = global_batch_size // idr_torch.size

DatalLoader(dataset,
sampler=data_sampler,
batch_size=batch_size_per_gpu,
num_workers=<int>,
persistent_workers=<bool>,
prefetch_factor=<int>,
pin_memory=<bool>,
drop_last=<bool>

Slurm

Example: A usual call to the Dataloader.

Important:

The batch size indicated at the moment of the creation of the

Dataloader is the batch size per GPU: batch_size_per_gpu.

22



Optimization of the data
preprocessing

Data preprocessing with DatalLoader «

Optimization of the DataLoader «

23



Optimization of the DatalLoader @

* Crucial points regarding the performance of data preprocessing:

NVLink

OPA

o ;;7—()\(;)1 . 300 GB/s
1 S ~
= 1.Loading the data in memory and

transforming it on the CPU

6 switches

2.Data transfers from CPU to GPU

Node 8 x A100 80Go

The performance of the Dataloader is mainly driven by: the CPU performance for
data loading and transformation, and the time spent in CPU to GPU transfers.

24



Optimization of the DataLoader @

1.Loading the data in memory and transforming it on the CPU

* num_workers allows us to define the number of processes (CPU cores) which
will work in parallel to preprocess the data on the CPU.

/ Compute time speedup on CPU.

Standard Slurm reservation
The multiprocessing environment which is on a 8 x A100 node
created occupies some space in the CPU RAM. . BBl cru
EEC0000 + .
GPU GPU
£ optimum GPU GPU
=1 S
(0]
3 ¢ #SBATCH --ntasks=1
= #SBATCH --gres=gpu:1l
8 #SBATCH --cpus-per-task=8
| | | | | | | | | | »
num_workers 25

The data loading and transformation operations can be effectuated in parallel on
multiple CPU cores. The processes implicated are called “workers” here.

Instead of one batch, num_workers batches will be preprocessed at the same time.

This option offers an important speedup in preprocessing time. On the other hand,
the creation of a parallel environment takes up space in the CPU RAM.

In a typical Slurm allocation on a Jean Zay octo-GPU, we reserve 8 CPU cores per
task. Optimization tests should be conducted for each test case to define the
optimal number of workers (lower than 8? multiple of 8?).



Optimization of the DataLoader

1.Loading the data in memory and transforming it on the CPU

* persistent_workers=True allows us to maintain the active processes
throughout the training.

J Time gain: We avoid reinitializing the processes at each epoch.

A Usage of the CPU RAM (can become an issue if multiple DataLoaders
are used).

Initializing the workers takes time (proportionately to their number). It is advised
to avoid reinitializing them at each epoch unless you need to make room in the
CPU RAM.

26



Optimization of the DataLoader @

1.Loading the data in memory and transforming it on the CPU

* prefetch_factor allows us to define the maximum number of batches the CPU
can preprocess in advance.

v~ Prevents GPU inactivity if CPU occasionally struggles
/\ Usage of the CPU RAM

computation on GPU
CPU — GPU transfer
computation on CPU

1]
[

prefetch_factor

computation on GPU
CPU — GPU transfer
computation on CPU

]
N

prefetch_factor

27

Preprocessing batches in advance on CPU can prevent GPU inactivity in case of
occasional CPU slowdowns.

The CPU will preprocess input data per pack of num_workersxprefetch_factor
batches.

Important: The preprocessed batches occupy CPU memory and could saturate it if
the prefetch factor is too large.



Optimization of the DataLoader @
2.Data transfers from CPU to GPU

* pin_memory=True allows storing batches directly in pinned memory.

pin_memory=False pin_memory=True

Device Device

Speedup of CPU/GPU
/ transfers m m

Host Host

Slows CPU memory
Pageable Pinned Pinned
A\ anagement

Pageable Data Transfer Pinned Data Transfer

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

28

To be transferred to the GPU, a message must first be copied from the pageable
memory to the pinned memory on the CPU.

The pin_memory=True option enables storing the message directly in pinned
memory to speed up the transfer.

It is advised to activate this option except if it slows down the CPU performance.



e

Optimization of the DatalLoader

2.Data transfers from CPU to GPU

/ Storing on pinned memory allows activating the asynchronism mechanism during the
transfers of CPU to GPU : data = data.to(gpu, non_blocking=True).

A Usage of the CPU RAM (intermediate memory buffers).

CPU — GPU transfer

non_blocking=False computation on CPU

CPU — GPU transfer I ' -

non_blocking=True .
computation on CPU

Activating the pin_memory option allows effectuating asynchronous sends during
the transfers from CPU to GPU.

As a result, the CPU no longer needs to wait for the GPU to receive the message
before continuing its computation.

The CPU computation and the CPU to GPU transfer overlap so we gain time.

29



Optimization of the DataLoader @

* Other DataLoader option:

* drop_last=True allows us to ignore the last samples if the size of the dataset
is not a multiple of the number of batches.

/ The workload per process is balanced.
/ We avoid the cost of treating an incomplete batch.

A Loss of information?

30

To avoid GPU inactivity, setting drop_last=True is is good practice. In return, you
may lose some information.



TP2_3 : Optimization of the DataLoader @

* Modify the DatalLoader options.
* Measure the time gain on a few steps.

31



TP2_3 : Optimization of the DatalLoader

Step Time (microseconds)

Step Time (microseconds)

» The most efficient optimization is the increase of num_workers.

num_workers=0

000,000
3,000,000
2,000,000
1,000,000

0
1 2 3 4 5 6

num_workers=4

2500000
2000000
1,500.000
1,000,000

500,000

Il Kernel

I Memcpy

I Memset

Il Communication

Il Runtime

num_workers=2

4000000
3000000
2,000,000
1000000

0
1 2 3 4 5 6 7 8 ¢ 10 M 12 13 14 15 8 7 18

num_workers=8

800,000
600,000
400,000

200,000

Il Dataloader Ml CPU Exec M Other

32

Since the CPU preprocesses packs of num_wor kers batches, we can see that
num_workers steps can run in a row without waiting.

We gain a lot of time by increasing the number of workers .



TP2_3 : Optimization of the DatalLoader

Time in seconds

1
®

HooE e
N B &

=
5]

>>> Turbo Profiler >>>

@

o N & O ®

40 workers
w32 workers
= 24 workers
16 workers
w8 workers

Iterations

jobid num_workers persistent_workers pin_memory non_blocking prefetch_factor drop_last loading_time

1 830199 16 False False False
3 830217 32 False False False
4 830224 40 False False False
2 830213 24 False False False
0 830180 8 False False False

2

2

2

False
False
False
False

False

0.140831

0.145662

0.147003

0.200591

0.204219

training_time
81.492809s
146.490717s
150.194498s
151.584189s
87.450866s

During the first iteration, we can see that the initialization takes more time when using

more workers.

Even when using a large number of workers, time peaks still appear due to the

variability of 10 performance on Jean Zay.

33



TP2_3 : Optimization of the DataLoader @

Intermediate conclusion about num_workers setting:

* Increase num_worker s progressively and observe if the DataLoader scales or
not on a few steps.

* For low CPU workload, num_workers can be a multiple of cpus-per-task.

» Setting too many workers creates bottlenecks or Out Of Memory failures.

* Be aware that few steps are not completely representative.

* |Os on Jean Zay are erratic.

34



TP2_3 : Optimization of the DatalLoader

‘ pin_memory=False, non_blocking=False ‘

¥ python (pid 593863): CPU

1,600 ms

[1.700 ms

[1.800 ms

@

[1.800 ms

v thread 593863 (python)

aten:to
aten::_to_copy

Distribut...

ProfilerStep#6

aten::cross_entropy_loss
aten:masked_select

atenzitem
aten:_local_scalar_dense

atenzcopy_ atenznonzero cudaMemcpyAsync
atenzcopy_ cudaMemepyAsync
f cudaMemcpyAsync
CPU
v thread 594417 (python)
¥ python (pid 0): GPU O
GPU 0 Est. SM Efficiency:
GPU 0 Utilization:
stream 7 Memcpy HtoD (Pa... voi
¥ Process Spans
PyTorch Profiler | PyTorch Profiler (0
~ —

If we zoom on an iteration, we note that the time taken by the DatalLoader on CPU
becomes negligible when increasing the number of workers.

CPU — GPU transfer

The GPU is now active three-quarters of the time.

GPU

35

We will try to optimize the part outlined in red which corresponds to the transfer of data
from CPU to GPU.



TP2_3 : Optimization of the DatalLoader

@

36

‘ pin_memory=True, non_blocking=False ‘
‘ms ||‘55D ms |1‘GDDm; |1,650 ms 1,750 ms 1,800 ms
¥ python (pid 3052945): CPU
1625835264
v thread 3052945 (python) Frofilerstep#t
aten:to DistributedDat... aten:cross_entropy_loss atenitemn 0.
aten::_... aten:masked_select aten::_local_scalar_dense
aten... aten:nonzero cudaMemcpyAsync
aten... cudaMemcpyAsync
cudas...
CPU
v thread 3053568 (python)
v python (pid 0): GPU 0
GPU 0 Est. SM Efficiency:
GPU 0 Utilization:
stream 7 Mem.- =
v Process Spans
PyTorch Profiler ‘ GHEERELEY) Press 'm' to mark current
H_J

CPU — GPU transfer

GPU

By storing the preprocessed batches directly in pinned memory, we reduce the transfer

time.



TP2_3 : Optimization of the DatalLoader @

‘ pin_memory=True, non_blocking=True ‘

[[1400 ms |1.450 ms 1,500 ms |1.550 ms

11,600 ms 1,650 ms |1.700

¥ python (pid 3088757): CPU
-1471760640
v thread 3088757 (python)

ProfilerStep#6

DistributedDat... aten:cross_entropy_loss atenzitem o..
aten:masked _select aten:_local_scalar_dense

atenznonzero cudaMemcpyAsync

f cudaMemcpyAsync

CPU

v thread 3134684 (python)

v python (pid 0): GPU O
GPU 0 Est. SM Efficiency:

GPU 0 Utilization:

¥ stream 7

v Process Spans

PyTorch Profiler

‘ PyTorch Profiler (0)

——

CPU — GPU transfer GPU 37

By activating the asynchronism mechanism, the CPU does not wait for the transfer from
CPU to GPU to be terminated before continuing its instructions.



TP2_3: Optimization of the Dataloader @

num_wokers = 16

e persistent_workers = True
e Chosen optimizations: pin_memory = True

non_blocking = True
prefetch_factor = 2

Configuration GPU Summary ® Execution Summary
Number of Worker(s) 1 GPU 0: Category Time Duration (us) Percentage (%)
Device Type GPU Name NVIDIA A100-SXM4-80GB Average Step Time 142,633 100 ® kemel
! @ Memcpy
Memory - 79.15GB Kemel 123,861 86.84 Memset
Compute Capability 8.0 Memcpy 9,311 653 @ Communication
- o
GPU Ullllza.m-zn 86.84 % F— 558 0.39 @ Runtime
Est. SM Efficiency 85.55 % ¢ {cati 3 0.03 ® DataLoader
Est. Achieved Occupancy 32.15% emmunication . @ CPU Exec
Runtime 0 0 @ other
DataLoader 327 0.23
CPU Exec 3,862 27

Other 4,675 3.28

&

The major optimization of the Dataloader is the parallelization of the data loading
and transformation on CPU with num_workers>1.

38

The optimal number of workers depends on your use case. You should run tests on
a few steps to choose. To many workers can slow down the execution.

We advise you to:

* Avoid reinitializing the workers at each epoch by setting
persistent_workers=True.

* Store batches directly on the pinned memory by setting pin_memory=True
unless you observe some weird CPU slowdown.

* Activate the asynchronism of CPU to GPU tranfers by setting
non_blocking=True when sending batches to GPU.

* Avoid incomplete batches by setting drop_last=True unless you think you
might lose too much information.

Setting prefetch_factor=2 (default) is usually enough.



Appendix: Optimization of the DatalLoader

* Impact of the prefetch factor

factor

prefetch

dlojz.py - 50 iterations - test partition gpu_p4

NB: These results don’t correspond to our usage case but still illustrate the influence of the parameters.

6 — 1.2202 0.4987
0.5175
4 — 12103 0.5089
3 — 12186 0.5000
2 12132 0.5138

0.5978

4

0.2953

0.2958

0.3002

0.2940

0.3294

0.3787

6

num_workers

0.2868

0.2777

0.2723

0.2832

0.2789

0.3412

0.2559

0.2327

0.2466

0.2384

0.2457

0.3441

10

(s) awn Buipeoq

prefetch_factor

= N N
vl
o

6 -ElURTeEdl 102.2604 59.2939 47.6288

B 200.0532

LR 195.7759

kR 197.3577

PR 196.5149

pR211.2326

102.5522 59.9912 48.1129

102.1433 59.0670 48.3071

102.4482 57.8355 46.9701

101.8959 57.4679 47.5303

106.7484 ©60.6338 47.4889

2 4 6
num_workers

48.6826

48.6261

47.6587

48.3869

46.3530

45.9499

8

50.2181

49.1603

50.1914

48.5632

47.9156

46.1235

10

@

200
180
160
140

120

(s) awiy Buluiely

100

80

60

39

We present here the results of a parametric study on the impact of the num_workers
and prefetch_factor parameters on the data preprocessing time on CPU.

This study was conducted on the dlojz. py test case on 50 iterations, on the Jean Zay
gpu_p4 partition (octo-GPU A100 PCle node). The numbers seen here are not
completely the same as in our “hands-on” case but the same trends appear.

The principal acceleration factor is the number of workers. For a given number of

workers, a prefetch_factor of 2 or 3 is generally sufficient.



