
DLO-JZ

IDRIS course, Part 6

Commented slides

Authors: Bertrand Cabot, Nathan Cassereau

May 2022, updated October 2023

Chapters:

 Inference & fine-tuning
 Vision Transformers
 Types of model parallelism for very large models
 API for model parallelism



The goal of this section is to briefly present a few methods for inference and
fine-tuning large models.



Distillation enables solving a complex task with a relatively small model. It
trains a smaller network and packs densely into it the knowledge acquired
by a larger network. We will then have an insignificant loss of performance
as well as a potentially great compute speed-up.



In order to perform distillation, one can train a small network exploiting the
predictions of a pretrained larger network. It is also possible to use the actual
labels to do a standard training step, provided that they are still available.

Possible loss functions between the teacher’s prediction and the student’s
output include the mean square error, the cross-entropy, the Kullback-Leibler
divergence, etc.

With this method, DistilBERT reached 97% of BERT performance with only
60% of its size.



Quantization allows us to reduce the memory footprint of the model and
reach the highest throughput which can be achieved by our hardware
accelerator (namely a GPU most of the time) by using 8 bits integer instead
of floating-point numbers.



A quantized network is mostly just the regular network whose weights have
been casted to another format, for instance 8 bits integers. However, we
need to be careful as we may degrade performance significantly. To
compensate this effect, we may need to add an additional fine-tuning step in
order to recover the performance we lost.



Training with integers weights is impossible because we cannot differentiate
our loss with respect to integers. To overcome this issue, we keep a copy of
the floating-point weights before casting them to integers. We can navigate
from the floating-point domain to the integer domain with a step function. We
can do the opposite with the Straight-Through Estimator [23] which ignores
the rounding step, and estimates floating-point gradients with an identity
operator.



The Lottery Ticket Hypothesis is the idea that a randomly-initialized neural
network is actually made of a set of subnetworks, some of which have similar
performances than the bigger network. It means that we could delete some
weights. Computation would be accelerated without much performance loss.
Research [26] shows that a large sparse network is much more powerful
than a smaller network.



There are multiple ways to choose which weights to keep and which to drop.
But research [25] shows that a simple magnitude-based choice is just as
efficient than more sophisticated methods.

We can then validate the weights which were kept and recover the potential
performance loss thanks to an additional fine-tuning step. We can use an
extension of Straight-Through Estimators [20] from quantization methods to
train the smaller network with a copy of the bigger model.



Dropping some weights allows (in theory) a speed-up in computation
because the workload is smaller. Nonetheless it goes against modern
hardware architecture which cannot adapt to this sparse layout. So in reality,
the execution time is not really decreased. Some of the most recent GPU do
take sparsity into account however. For instance A100 GPU from NVIDIA
support 2:4 sparsity with their tensor cores. It means that every four
consecutive weights, two can be dropped.

If we want to maximize the usage of the sparsity support of our GPU, we may
want to swap two columns. If these swaps are performed wisely, the overall
operation may remain unchanged. For instance with a Self-Attention Layer,
the attention matrix is unchanged when swapping two columns of Q,
provided that the two corresponding columns of K are also swapped,
because the attention matrix depends on QKT. The same note can be made
with dense layers if we consider them by packs of two consecutive dense
layers.



In this section, we will present Transformers, VisionTransformers, and then
CoAtNet, which will serve as a large model for the practice exercises in
Model Parallelism.



On PapersWithCode, we can see that the Vision Transformers,with more
than a billion parameters, are the state-of-the-art models on ImageNet.
These are large models which have the problematics we discussed
previously.

Note that CoAtNet, which we will use during the practice exercises, has first
place in the ranking.



The first Transformer described in the paper, “Attention Is All You Need”,
was a new type of architecture enabling text translation from English to
French. This first transformer came from and improved the RNNs used for
this same translation task. It contains an encoder and a decoder.

The most sophisticated RNNs used an attention mechanism to resolve the
problem of sentence representation between the encoder and the decoder.
The Transformer exclusively uses this attention mechanism without having
recurrent layers.

Instead of encoding the sentence word by word as the RNNs do, it takes
the whole sequence to encode by adding information about the position of
the word in the sentence, and transforms the sequence into a latent
sequence by using the Self-Attention mechanism.



In English and most languages, a same word may have two different
meanings. The corresponding vector will then carry information about both
meanings. For instance in English, the word “bat” may refer to an animal or
an object.



The transformer can solve this ambiguity thanks to the context. If the
sentence contains words such as « flying » or « night » then we may clarify
the meaning in one direction ; in the other if the sentence has words such as
« trunk » or « ball ». The corresponding vector will then be enriched such
that there is no longer any ambiguity.



The first transformer was made of a stack of encoders as well as stack of
decoders. The most famous transformer with such architecture is T5. Other
famous transformers have adopted a different architecture.

BERT is the transformer which started the « transformer mania ». It is simply
made of a stack of encoders. It is very good for classification, whether it is
sentence classification or token classification.

GPT-like transformers are made of a stack of decoders. It make them very
good for text generation. A recent discovery with LLM (Large Language
Models) is that every task can be rephrased as a generation task, including
classification task.



The Self-Attention mechanism applies the Scaled Dot-Product Attention to
a sequence of Input embeddings (which has already undergone a linear
transformation).

The Query, Key and Value tensors are identical in the Self-Attention
mechanism enabling the transformation of a sequence into a latent
sequence which takes into account the dependency of each word
compared to each other word.

QKT corresponds to the dependency matrix.

Multi-head Attention divides the sequence of input embeddings to pass it
into several Scaled Dot-Product heads. This allows taking into account
several levels of dependency links at the same time and several
representations of a same vector. This also becomes a completely
parallelizable and accelerated process. Moreover, all the linear
transformations allow having a total liberty over the tensor dimensions.



In summary, the Transformers:

 Transform the entire sequence (unlike the CNNs and RNNs).
 Possess, in consequence, a significant number of weights.
 Require large datasets.



The first Vision Transformer applied to imagery is described in the paper,
“An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale”.

Instead of treating a word sequence, the ViT treats an image sequence. To
do this, it cuts images into patches of sub-images represented in pixel
vectors. After a linear transformation, these patches represent the
sequence of input embeddings to which we add position information:
exactly as for the first Transformer in NLP.

However, as what is described for BERT in NLP, we add a patch 0 to the
sequence, a class token which will serve as the classification output after
transformation.



Finally, CoAtNet, which we will use for the practice exercises on Model
Parallelism, is described in the paper, “CoAtNet: Marrying Convolution and
Attention for All Data Sizes”.

CoAtNet is combining a classic CNN, first, followed by a Vision
Transformer. Since the model begins in CNN, there is no image patching to
do as input. Therefore, we can easily replace a CNN in a code by a
CoAtNet. The transition between CNN and Vision Transformer is done by
patching the output of the CNN part.

This has the benefit of taking advantage of the CNN translational
equivariance and the overall understanding of the image context of the
Vision Transformers, at the same time.



In comparison, the results of the 7 levels of CoAtNet models surpass all the
current Vision Transformers and current CNNs which have an equal
number of parameters or equal computing cost.

It is interesting to note that there are extensions for increasing the accuracy
score of Vision Transformers on ImageNet-1k.For example, ImageNet-21k
is 100 times larger for an augmented training.



The goal of this section is to describe the different types of Model
Parallelism possible and their advantages.

Due to its complexity, Model Parallelism is only used for very large models.

Each parallelism must be seen as functioning along a specific axis. We will
be describing Pipeline Parallelism, Hybrid Parallelism, Tensor Parallelism
and 3D Parallelism.



Since the arrival of NLP Transformers and Vision Transformers in
Computer Vision,neural network models have entered into another
dimension. We will speak about large models of more than a billion
parameters which bring new problematics, even when using a
supercomputer, and are completely beyond the capacity of a classical
computer.

As we have seen previously, the memory footprint directly linked to a model
was negligible for models of a standard size. For large models, it becomes
critical.



The memory footprint linked to the model obviously increases in relation to
the model size but also when we use Mixed Precision, the optimizer which
is used and the number of associated momentums.



Data parallelism, which we previously discussed, is the best solution for the
throughput and for ease of implementation. However, only the memory
footprint of the activations is distributed and this is a problem for large
models. Data parallelism distributes the batches through the GPUs.

For large models, therefore, we are adding the principle of model
parallelism (notably, pipeline parallelism) which consists of distributing the
model using the GPUs. In this way, the complete memory footprint is
distributed. Moreover, the batch size is not augmented which is an
advantage when we use a very large number of GPUs for the distribution
when compared to Distributed Data Parallelism (DDP).



The naive way to implement model parallelism is to split the model between
2 layers and to use the GPUs sequentially during the training loop.
However, because there isn’t any parallelization, there will not be any
acceleration. Only distribution of the memory footprint will be done.

Pipeline parallelism, by splitting the model in the same way between 2
layers, enables in addition, the acceleration of the process. For this, it
subdivides the batch into micro-batches. The training iteration is complete
when all the micro-batches are passed in forward and in backward
propagation.

Thus, the bubble corresponding to GPU inactivity time is largely reduced. In
practice, pipeline parallelism is used when we split the model going in the
direction of the layers.



The possible optimizations of pipeline parallelism are organized according
to the 2 following methods:

 Synchronous pipeline parallelism corresponds to the pipeline
parallelism described in the previous slide. One possible optimization
is to change the execution order of the micro-batches in order to
reduce the memory footprint. When the backward propagation is
executed, the memory footprint of the activations of the micro-batch
can be freed.

 Asynchronous pipeline parallelism does not permit waiting for the
end of a training iteration before beginning a new one. This results in
a loss calculation, sometimes not with the N-1 version of the model
but with its N-2 version. Thus, the descent gradient process loses in
training quality but the parallelism is maximally accelerated and there
is no longer a bubble. The acceleration is comparable with that of
data parallelism. However, the asynchronous pipeline is rarely used.



Hybrid parallelism refers to using data parallelism and pipeline parallelism
at the same time.

Data parallelism is more effective in accelerating the training. However, a
certain degree of pipeline parallelism is necessary for large models.

A subtle mix of both of these enables the best optimization of the process.

In addition, if we use a large number of GPUs, data parallelism could lead
to batch sizes which are too large. Using pipeline parallelism allows
moderating the batch size.



There are two ways of doing model parallelism. The aforementioned Pipeline
method splits the model by partitioning layers across all GPUs.

The Tensor method splits each layer separately into multiple GPUs.



With Tensor Parallelism, we can split a dense layer along two different
directions: along columns or along rows.



This way of splitting the weight tensor highlights multiple subcomputation
which can be performed simultaneously on multiple GPUs. Since the output
of the layer is the input of the next layer, this next layer will need the full
vector. This implies a communication between both GPUs to pool their result.



With the column-wise split, we need to perform an AllGather communication
to concatenate outputs of all GPUs. With the row-wise split, we need to
perform an AllReduce communication to do the sum of all results. It is
necessary to do these communications steps at every layer.



Since with row-wise splitting, each GPU only requires a slice of the input
vector, and since column-wise splitting gives a sliced output, then putting a
row-wise split layer after a column-wise split layer allows us to only do the
communication step after the second layer. It removes entirely the need to
communicate after the first layer. Therefore the volume of communication
required by Tensor Parallelism is halved.

The same reasoning can be done with Self-Attention mechanism, which is
actually even easier since more fundamentally parallel.



3D parallelism distributes along 3 axes :

 Data parallelism along the batch axis
 Pipeline parallelism along the layer axis
 Tensor parallelism along the axis of the layer nodes or inside the
tensor computations specific to each layer

We have seen that data parallelism is simple to implement because today,
all the Deep Learning frameworks integrate a data parallelism solution
which is the best solution for accelerating the code. However, there is a
trend towards larger and larger batches.

We have also seen that pipeline parallelism enables both accelerating the
code and distributing the memory footprint linked to the model. It requires a
certain effort to be implemented but it can be accessed via a group of
libraries dedicated to model parallelism.

Tensor parallelism, only accessible with an important implementation effort
or through very specialized libraries(Megatron-LM), enables a net
computation acceleration and sharing of the memory footprint. However, it
generates a greater flow in volume of communications between the GPUs,
so it will only be used between GPUs of the same compute node.



The implementation of model parallelism and the training of large models,
or acceleration on a very large scale as we have just described, is
accessible through certain dedicated libraries.

This section describes the following dedicated libraries:

 Deepspeed from Microsoft
 Fully Sharded Data Parallel from FairScale
 Megatron-LM from NVIDIA
 Accelerate, Lightning Fabric & vLLM



Microsoft’s Deepspeed, dedicated to accelerating large models and very
large models, offers a group of techniques in PyTorch.

Deepspeed is fairly easy to integrate in a PyTorch code and contains a
multitude of acceleration and parallelism functions.



The most interesting functionality of Deepspeed is the Zero Redundancy
Optimizer (ZeRO). ZeRO is an optimization of data parallelism for large
models and it enables reducing the memory footprint linked to the model by
using data parallelism. Data parallelism completely copies the variables
linked to the model (weights, gradients, the optimizer historic) into each
GPU.
ZeRO enables sharing the memory footprint linked to the model. Each GPU
keeps a different portion of the model footprint. When a GPU needs a part
of the model which it doesn’t have, the GPU which holds this portion
communicates it to the GPU in question. In this way, ZeRO functions
exactly like data parallelism by distributing along the batch axis while at the
same time distributing the stored information linked to the model.

ZeRO has 3 stages:

 Stage 1 - distribution of the optimizer part, equivalent to data
parallelism in terms of inter-GPU communication.

 Stage 2 - distribution of the optimizer and gradient parts, equivalent to
data parallelism in terms of inter-GPU communication.

 Stage 3 - distribution of the optimizer, gradient and model weights
parts, which increases the cost up to 50% in terms of communication.



There are also optimizations of ZeRO: ZeRO Offload and ZeRO Infinity.
These use CPU memory to distribute even larger models which have more
than 1000 billion parameters, corresponding to models of the future.



Deepspeed also integrates the « fused » optimizers offered by APEX.

It fuses the GPU kernels in order to economize the initialization operations
and the memory reading/writing. This causes a slight acceleration of the
optimizers within the GPUs.



Deepspeed also offers one-bit optimizers which decrease the necessary
communication volume,thereby accelerating the optimizer step for a model
distributed in data parallelism.

The priniciple of the 1-bit Adam optimizer is to compute the momentum
only locally and then, to exchange only a divergence information coded on
1-bit Adam between the local momentums. The variance, being non-linear,
cannot be processed in the same way. On the empirical observation that
the variance rapidly becomes nearly stable, the 1-bit Adam, after a warm-
up stage corresponding to a classic Adam during a few epochs, switches
into its compressed mode where the variance is set at the last value
computed.

This enables an approximate 97% reduction in communication volume. For
a large model deployed on a large number of GPUs in data parallelism, we
observe a time reduction by a factor of 3 with practically identical accuracy.



In addition to ZeRO, Deepspeed offers Fused kernels, 1-bit optimizers, and
a number of other important applications for acceleration:

 Pipeline Parallelism
 Integration of Megatron-LM enabling the use of 3D Parallelism
coupled with ZeRO

 0/1 Adam which is an optimization of 1-bit Adam
 Memory and buffer configuration
 Sparse Attention
 etc.



Fully Sharded Data Parallel (FSDP) is a Data Parallelism optimization which
is heavily inspired by ZeRO-Stage 3. GPUs do not store all weights at all
times. Unlike ZeRO-3 which scatters layers across GPUs (a partitioning
similar to Pipeline Parallelism), FSDP partitions each layer across GPUs (a
partitioning similar to Tensor Parallelism). It is essential to note that FSDP,
as well as ZeRO-3, does not perform model parallelism. All weights are used
on all GPUs, it is just that they are not stored and duplicated on all processes.
Therefore, we need to execute additional communication steps so that each
GPU is able to do the forward and the backward steps properly.

The FSDP implementation has the advantage of being included natively in
PyTorch and no longer requires an external library like it used to (FairScale).
Its usage is quite simple, and very similar to standard DDP (although we
have the possibility to add some specific optimizations as well). Experiments
have demonstrated that FSDP can be used to train very large language
models, without requiring other parallelism methods. Depending on the
configuration and chosen optimizations, FSDP may even reach higher
performance than ZeRO-3 from DeepSpeed.



NVIDIA is developing Megatron-LM which enables the turnkey
management of 3D Parallelism using Mixed Precision for the most well-
known Transformer architectures with NVIDIA GPUs such as GPT, BERT,
and T5.

Megatron-LM represents a major contribution to the training of what are
currently the largest Transformer models. The most recent versions of
Megatron-LM have also introduced sequence parallelism, a method for
partitioning the activations into the GPU subgroup for the layers where
tensor parallelism does not intervene (for example, LayerNorms).



Accelerate is a library developed by HuggingFace with a similar objective.
Accelerate is actively being developed and implements new methods very
quickly. It allows the usage of Megatron-LM, DeepSpeed, etc. IDRIS’
technological watch group realized that multi-node training with Accelerate
is possible but also very tedious since it requires one specific configuration
file per node. That is why we developped idr_accelerate, a wrapper of the
accelerate command which manages those configuration files behind the
scenes. It is used the following way:

`srun (or torchrun) idr_accelerate <accelerate options such as config file>
train_file.py <train file arguments>`

Lightning Fabric is a light version of Pytorch Lightning which is not as
invasive in the code and also not as obscure. It also enables multiple
optimizations without many code updates.



LLM’s inference has become a very signification concern since lately, on top of powering
many online APIs, many scientists use it on supercomputers to study their behaviours
and their predictions.

Since attention mechanism do not apply independently on each token, it is more efficient
to store the Key and the Value of previous tokens to compute attention scores more
quickly. However this is extremely memory-consuming.

The fact that LLM generate variable-sized sequences, that each token needs to be
generated sequentially, and that some methods (for instance Beam Search) requires
generating multiple tokens for a single prompt (therefore branching the generation
process) leads to extreme and unreasonable memory usage. More of it is not even
exploited (it is just memory fragmentation), but it limits the batch size quite severely.

For this reason, vLLM creates Paged Attention. Instead of storing an entire sequence
contiguously in memory (which leads to unused reserved memory), we split tokens in
small groups. Within a group, tokens are stored contiguously in physical memory, but
groups are not. Since most CUDA kernels require tensors to be stored contiguously,
vLLM implements the behaviour of an OS on GPU with the usage of a logical memory
and pages. We can even re-use memory by pointing multiple logical blocks to the same
physical block. Those optimizations limit memory waste and enable larger batches.






