
DLO-JZ course

Commented slides

Author: Myriam Peyrounette

June 2023



This chapter begins by laying the foundations of parallel computing. In terms of distributed
training, the high-level libraries such as TensorFlow and PyTorch offer ready-to-use tools which
handle the parallelization but mask the problematics of distribution. The idea here is to
understand a little better what is happening under the hood.

This introduction enables us to subsequently consider the distribution problematics of a neural
network training on multiple GPUs and compute nodes. Here, we present the "data parallelism"
technique which is the most approachable and most used.



When a program is launched, a group of instructions is enacted. The sequence of instructions
is stored in memory and executed by a physical computation unit (CPU core or GPU graphics
card). This computation instance is called “process”.

A code is sequentially executed when a single process executes the instructions, one after
another.



Multiple processes can be solicited to execute a program. The processes can take charge of
different parts of the program in order to accelerate its global execution time. This is parallel
execution.

In the case of parallel execution on a distributed memory system, an independent memory
space is associated with each process. A process does not have access to variables stored in
the memory which are allocated to another process.



In distributed memory, process synchronization or information sharing steps are inevitable. For
example : IO, overall error calculation, etc.

Processes can communicate with each other by sending messages via the interconnection
network. These communications are handled by specialized libraries such as MPI (CPU) or
NCCL (GPU, NVIDIA).



At the beginning of the execution, the library handling the communications initializes a parallel
environment by creating an overall communicator: the WORLD communicator. This contains all
of the processes allocated to the execution. Each of these processes is identified by its rank.

The inter-process communication mechanisms are also initialized and managed by the libraries:
communication pipelines (ports, addresses), communication buffers (temporary memory
management when a communication is initiated), etc.



To understand the behavior of a program executed in parallel, we will present some simple
examples.

These examples are based on the use of Horovod, a library developed to facilitate the
distribution of Deep Learning training.

Horovod uses the MPI or NCCL communication libraries in backend: MPI for the inter-CPU
communications, and NCCL for the inter-GPU communications.

In the examples which follow, the instructions are on CPU for the sake of simplicity and easy
reading but all the concepts covered are transposable on GPU.



Example 1 :

The hvd.init() initializes the parallel environment at the start of execution. A WORLD
communicator is created.

To launch a script in parallel on Jean Zay, a number of processes > 1 must be defined via Slurm
using the --ntasks option and the script must be launched via the srun command.

The example message: Each process reads and executes the program independently.



Example 2 :

Example message: Each process is identified by its rank within the communicator.

We see here that each process contains a private variable, rank, a distinct value per process.



Example 3 :

Example message: We can attribute different tasks per process by making certain instructions
dependent on the rank number of the process.



Example 3bis :

Example message: We can attribute different tasks per process by making certain instructions
dependent on the rank number of the process.



Example 4 :

Sequential execution of a computation loop.



Parallelization of the computation loop + vision of a parallel execution on 2 processes.

1/ To parallelize a loop, we distribute the loop indices on the different processes. It is important
for this to be the most equitable distribution possible. (iend - istart ideally identical on each
process) in order to balance the computation load on all the processes and to optimize the
computation acceleration.

2/ We see the impact of the private variables:

- Vector c is only partially filled by processes. If we consider that the interest of this program is
to compute the value of sum, we can ignore it. A memory gain is even possible by setting the
size of vector c for iend - istart on each process.

- The sum value is incorrect, and differs depending on the process, because each process only
reads a part of vector c. An inter-process communication is necessary.



Parallelization of a computation loop + vision of a parallel execution on 2 processes + inter-GPU
communication

The AllReduce communication operation enables performing a reduction operation (sum,
product, minimum, maximum) on a value held by all of the communicator processes. The result
of this operation is recuperated by all of the processes.



AllReduce is a collective communication: It solicits all the processes.

Here, all the processes must both send and receive a piece of information (value sent = ai,
value received = ∑ai).

This communication represents a synchronization barrier: All the processes must wait before
continuing their computation.

This synchronization can represent an important loss of time if the computing load is unevenly
distributed between the processes.



A quick overview of the inter-process communications offered by the NCCL library.

SEND / RECV = point-to-point operations soliciting only two processes.

The other operations are collective.



How much time gain to expect from the parallelization of a program?

Ideally, to solve the same problem, a parallelized code goes N times faster on N processes than
a sequential.

In practice:

- Certain code parts are not parallelizable and stay sequential. This cost is inherent to the code
structure.

- Inter-process communications have a cost (initialization of buffers, physical time of message
propagation on the interconnection network, …). This cost becomes potentially prohibitive when
the number of processes is too large for a given computation load.



To estimate the impact of parallelization on a code, it is advised to conduct a scalability study.
This study links the execution time of the code in parallel to the number of processes.

Strong scaling: We maintain a fixed problem size and we trace the speedup based on the
number of processes. Tracing this scaling shows us the optimal number of processes to define
for a given problem.

Weak scaling: We increase the problem size proportionally to the number of processes and we
trace the efficiency based on the number of processes. Tracing this scaling shows us the
maximum problem size which the code is capable of processing.



The cost of communications on Jean Zay.

Different types of interconnection networks quadri-GPU V100 nodes:

- NVLink ~ 2 x 25 GB/s → intra-node

- PCIe ~ 16 GB/s → CPU/GPU

- OPA ~ 12 GB/s → inter-nodes

Conclusion: Good intra-node scalability expected; less good inter-node scalability.

On the right, example of strong scaling of the “Flaubert” classification bench (fine-tuning).
Executed on Jean Zay. Illustration of the divergence at the moment of changing to multi-nodes.



The cost of communications on Jean Zay.

Different types of interconnection networks of octo-GPU 80GB A100 nodes:

- NVLink ~ 300 GB/s → intra-node

- PCIe ~ 32 GB/s → CPU/GPU

- OPA ~ 12 GB/s → inter-nodes

Conclusion: Good intra-node scalability expected; less good inter-node scalability.

On the right, example of strong scaling of the “Flaubert” classification bench (fine-tuning).
Executed on Jean Zay. Illustration of the divergence at the moment of changing to multi-nodes.





The main objective of data parallelism is to speed up the training.

Here, the model will be replicated on each GPU. Therefore, the model must be contained in
memory on 1 GPU.

The consequence of data parallelism is the augmentation of batch size in proportion to the
number of GPUs used. This implies adjusting certain parameters of the model. This will be
presented in the following chapters.



Data parallelism consists of equally distributing the dataset on all the available processes so
that each process treats only one part of the data.

The batches created per process are called local batches here (i.e. contained in memory by
only one process). The propagation and backpropagation steps are effectuated from these local
batches, resulting in local gradient computation.

The local gradients are averaged on all the processes through AllReduce, a collective
communication reduction. The model parameters are updated based on these overall gradients.

Important: In data parallelism, a training iteration implies N local batches in parallel with N
representing the number of active processes. The overall batch size used for this training is,
therefore, N x batch_size_per_gpu.



The data parallelism is implemented in classes within the PyTorch or TensorFlow libraries. It is
also possible to use Horovod in these two frameworks.



We will focus on the PyTorch DistributedDataParallel class.



Example of a Slurm configuration for the parallel execution of a training.

Important: In data parallelism, one process is attached to each GPU and the script is launched
with the srun command.



Implementing data parallelism with DistributedDataParallel.

The parallel environment is initialized by the call to the init_process_group() function.

NCCL is the backend to use on a GPU architecture.

The MASTER_ADDR (name of the compute node which will be designated as “master” during
the inter-node communications) and MASTER_PORT (port number of the “master” node
chosen between 10000 and 20000 arbitrarily) variables must also be defined in the computing
environment.

The characteristic values of the parallel environment (world_size, rank and local_rank) are
recovered from the Slurm environment by the corresponding environment variables.



IDRIS developed the idr_torch script to facilitate the interfacing with Slurm. It enables
recovering the values of the size, rank and local_rank environment variables and to define the
MASTER_PORT and MASTER_ADDR environment variables.



Using the module idr_torch.py module.





Distributing the dataset on all the available processes is managed by the DistributedSampler
class.



Implementating DistributedSampler.

DistributedSampler will distribute the dataset to all of the processes according to the size and
rank parameters.

Important: The shuffling step (random reorganization of the data indexes) is attributed to the
Sampler and not to the DataLoader.



Example of using DistributedSampler.



Example of using DistributedSampler with random reorganization of the indices.



Important: The seed used by DistributedSampler for the shuffling step is calculated from the
epoch number but this number is not updated automatically during the training.



To update the epoch number and, therefore, the seed used for shuffling in the
DistributedSampler class, it is necessary to call the set_epoch() function at each epoch.



If you use a custom Sampler, a distribution of indices is possible as illustrated. This example is
based on the DistributedSampler class.




