Deep Learning Optimized on Jean Zay

Distribution — Data parallelism

DLO-JZ course
Commented slides
Author: Myriam Peyrounette

June 2023

Distributed training

General knowledge about parallel computing «

Data parallelism to distribute your training «

This chapter begins by laying the foundations of parallel computing. In terms of distributed
training, the high-level libraries such as TensorFlow and PyTorch offer ready-to-use tools which
handle the parallelization but mask the problematics of distribution. The idea here is to
understand a little better what is happening under the hood.

This introduction enables us to subsequently consider the distribution problematics of a neural
network training on multiple GPUs and compute nodes. Here, we present the "data parallelism"
technique which is the most approachable and most used.

Distribution: General knowledge about parallel computing @

Memory

Sequential execution
Program
- * Only one process executes the program.
* The variables defined in the program are
stored in the memory allocated to the process.
* One process executes the code on one
physical compute unit (CPU core or GPU).

When a program is launched, a group of instructions is enacted. The sequence of instructions
is stored in memory and executed by a physical computation unit (CPU core or GPU graphics
card). This computation instance is called “process”.

A code is sequentially executed when a single process executes the instructions, one after
another.

Distribution: General knowledge about parallel computing @

Parallel execution with distributed memory

« Several processes execute the code at the
same time (multiprocessing).

* The variables defined in the program are
private, they are stored in the local memory
allocated to each process.

* |tis possible that the processes execute
separate parts of the code.

Multiple processes can be solicited to execute a program. The processes can take charge of
different parts of the program in order to accelerate its global execution time. This is parallel
execution.

In the case of parallel execution on a distributed memory system, an independent memory
space is associated with each process. A process does not have access to variables stored in
the memory which are allocated to another process.

Distribution: General knowledge about parallel computing

Parallel execution with distributed memory

+ To share information, the processes can send each other messages through the
interconnection network.

*+ These communications are managed by libraries such as MPl or NCCL.

Message Message Message

Network

5

In distributed memory, process synchronization or information sharing steps are inevitable. For
example : 10, overall error calculation, etc.

Processes can communicate with each other by sending messages via the interconnection
network. These communications are handled by specialized libraries such as MPI (CPU) or
NCCL (GPU, NVIDIA).

Distribution: General knowledge about parallel computing

In a parallel code based on the MPI or NCCL library,

* The set of processes exists in a common parallel environment initialized
at the beginning of the execution.

* From the initialization to the destruction of this parallel
environment, all the processes read and execute
the program.

* During the initialization of the environment, a
communicator WORLD is created to allow the
set of processes to communicate with each other.

* The communicator has a size (the number of
processes).

= Within a communicator, each process can be identified by
its rank.

At the beginning of the execution, the library handling the communications initializes a parallel
environment by creating an overall communicator: the WORLD communicator. This contains all
of the processes allocated to the execution. Each of these processes is identified by its rank.

The inter-process communication mechanisms are also initialized and managed by the libraries:
communication pipelines (ports, addresses), communication buffers (temporary memory
management when a communication is initiated), etc.

Distribution: General knowledge about parallel computing

Concrete examples based on the Horovod library

» The Horovod library is designed to ease the implementation of
Deep Learning distributed training

Deep learning frameworks

Communication libraries .. TerigoiFicw /
. MPI(on CPU) / . Keras v
. NCCL (onGPU) . PyTorch v

. Apache MXNet /

To understand the behavior of a program executed in parallel, we will present some simple
examples.

These examples are based on the use of Horovod, a library developed to facilitate the
distribution of Deep Learning training.

Horovod uses the MPIl or NCCL communication libraries in backend: MPI for the inter-CPU
communications, and NCCL for the inter-GPU communications.

In the examples which follow, the instructions are on CPU for the sake of simplicity and easy
reading but all the concepts covered are transposable on GPU.

Distribution: General knowledge about parallel computing

Example 1: Each process reads and executes the code lines

+ Parallelized code using Horovod:
import horovod.torch as hvd
hvd.init()

size = hvd.size()
print(f'The communicator size is {size}')

Execution on 4 processes (#SBATCH --ntasks=4):

$ srun --ntasks=4 <...> python script.py
The communicator size is 4

The communicator size is 4
The communicator size is 4
The communicator size is 4

Example 1 :

The hvd.init() initializes the parallel environment at the start of execution. A WORLD
communicator is created.

To launch a script in parallel on Jean Zay, a number of processes > 1 must be defined via Slurm
using the --ntasks option and the script must be launched via the srun command.

The example message: Each process reads and executes the program independently.

Distribution: General knowledge about parallel computing

Example 2: We identify the processes thanks to their ranks

+ Parallelized code using Horovod:

import horovod.torch as hvd
hvd.init()
size = hvd.size()

rank = hvd.rank()
print(f'I am proc {rank} among {size}')

* Execution on 4 processes (#SBATCH --ntasks=4):

srun --ntasks=4 <...> python script.py
am rank 1 among
am rank 3 among

am rank 2 among
am rank 0 among

Example 2 :

Example message: Each process is identified by its rank within the communicator.

We see here that each process contains a private variable, rank, a distinct value per process.

Distribution: General knowledge about parallel computing

Example 3: The processes can be assigned different tasks according to their ranks

+ Parallelized code using Horovod:

import horovod.torch as hvd

hvd.init()

size = hvd.size()

rank = hvd.rank()

print(f'I am proc {rank}, my rank is {"even" if rank%2==0 else "odd"}')

* Execution on 4 processes (#SBATCH --ntasks=4):

srun --ntasks=4 <...> python script.py
am proc 2, my rank is even
am proc my rank is even

0,
am proc 1, my rank is odd
3,

am proc my rank is odd

10

Example 3 :

Example message: We can attribute different tasks per process by making certain instructions
dependent on the rank number of the process.

Distribution: General knowledge about parallel computing

Example 3bis: The processes can be assigned different tasks according to their ranks

+ Parallelized code using Horovod:

import horovod.torch as hvd

hvd.init()

size = hvd.size()

rank = hvd.rank()

if rank%2==0: print(f'I am proc {rank}, my rank is even')
else: print(f'I am proc {rank}, my rank is odd')

* Execution on 4 processes (#SBATCH --ntasks=4):

srun --ntasks=4 <...> python script.py
am proc 2, my rank is even
am proc my rank is odd

,
3,

am proc 0, my rank is even
1,

am proc 1, my rank is odd

1

Example 3bis :

Example message: We can attribute different tasks per process by making certain instructions
dependent on the rank number of the process.

Distribution: General knowledge about parallel computing

Example 4: Parallelization of a compute loop

1Process 01

N-4
a=1[8, 1, 2, 3]

+ Initial state of the memory 2a b
sum = 0

for i in range(N) :
* Program cli] = a[i] + b[i]
sum += c[i]

N=4

* Final state of the memory a=1[0, 1, 2, 3]
b= [4., 5, 6, 7]
c=[4, 6, 8, 18]
sum = 28

12

Example 4 :

Sequential execution of a computation loop.

Distribution: General knowledge about parallel computing @

Example 4: Parallelization of a compute loop

1Process 1:

N=4 N=24
a=1[0, 1, 2, 3] a=1[06, 1, 2, 3]
+ Initial state of the memory Zale e gl B L
sum = 0 sum = 0
size = hvd.size()
rank = hvd.rank()
istart = rank * N / size
* Program iend = (rank+1) * N / size
for i in range(istart,iend) :
c[i] = a[i] + b[i]
sum += c[i]
. N-=4 N=4
* Final state of the memory a=1[0, 1, 2, 3] a=[0,1, 2, 3]
b=1[4, 5 6, 7] b=1[4,5, 6, 7]
c=1[4, 6, 6, 8] c=1[0, 8, 8, 10]
sum = 10 sum = 18 13

Parallelization of the computation loop + vision of a parallel execution on 2 processes.

1/ To parallelize a loop, we distribute the loop indices on the different processes. It is important
for this to be the most equitable distribution possible. (iend - istart ideally identical on each
process) in order to balance the computation load on all the processes and to optimize the
computation acceleration.

2/ We see the impact of the private variables:

- Vector c is only partially filled by processes. If we consider that the interest of this program is
to compute the value of sum, we can ignore it. A memory gain is even possible by setting the
size of vector c for iend - istart on each process.

- The sum value is incorrect, and differs depending on the process, because each process only
reads a part of vector c. An inter-process communication is necessary.

Distribution: General knowledge about parallel computing @

Example 4: Parallelization of a compute loop

1Process 01 1Process 11

N=4 N=4

a=1[6, 1, 2, 3] a=1[06, 1, 2, 3]
+ Initial state of the memory Zale Bl

sum = 0 sum = 0

size = hvd.size()

rank = hvd.rank()

istart = rank * N / size
* Program iend = (rank+1) * N / size

for i in range(istart,iend) :
c[i] = a[i] + b[i] 2 28
sum += c[i]

sum = hvd.allreduce(sum,op=hvd.Sum)

N=4 N=4
* Final state of the memory a=[0, 1, 2, 3] a=1[0,1, 2, 3]
b= [4., 5, 6, 7] b =1[4, 5, 6, 7]
c=1[4, 6, 0, 0] c=1[0, 6, 8, 10]
sum = 28 sum = 28 14

Parallelization of a computation loop + vision of a parallel execution on 2 processes + inter-GPU
communication

The AlIReduce communication operation enables performing a reduction operation (sum,
product, minimum, maximum) on a value held by all of the communicator processes. The result
of this operation is recuperated by all of the processes.

Distribution: General knowledge about parallel computing

* Inter-process communication A11Reduce()

PO | a Ja
« Collective communication
A y P1 a, Ya
+ Synchronization barrier
P2 a. 2a
POP1 P2 P3 | POP1P2P3 | POP1P2P3 P3 a, 2a,
Al1lReduce

(Z, TI, min, max)

A costly communication

141° (1]

Barrier

Ky

15

AllIReduce is a collective communication: It solicits all the processes.

Here, all the processes must both send and receive a piece of information (value sent = ai,
value received = ai).

This communication represents a synchronization barrier: All the processes must wait before
continuing their computation.

This synchronization can represent an important loss of time if the computing load is unevenly
distributed between the processes.

Distribution: General knowledge about parallel computing

« NCCL communications

PO |7]i
P1 E D
P2 D D
P3 D D

Send/Receive

ofa] [
nfe] [
o
SO

Reduce
(=, M, min, max)

PO
P1

2]
[]
L]
Broadcas
0 [a]
P1.
2 [a]
s [o]

Al1Reduce

(Z, T, min, max)

T

[=f[=]=]=]

2
P3

r+

T

gn
[][][]]

T

P

wola] [a[e]a]s]
t[a] [a[o]alal
w[a] [alo]ee]
r[a] [alalale

AllGather
Po[a[b[cd] %a |
Pifalblcle] [®]
e2[a[o]c]a] [
P falolcle] [34]

ReduceScatter

(=, T, min, max)
16

A quick overview of the inter-process communications offered by the NCCL library.

SEND / RECV = point-to-point operations soliciting only two processes.

The other operations are collective.

Distribution: General knowledge about parallel computing @

Sequential execution Parallel execution

Program s Program
°9 ‘ Global Global °g
execution time execution time

! llllﬁ
L]
]

TparaII (1proc) +T

» Global execution time: T (Nprocs) = N seq T Lcomm

17

How much time gain to expect from the parallelization of a program?

Ideally, to solve the same problem, a parallelized code goes N times faster on N processes than
a sequential.

In practice:

- Certain code parts are not parallelizable and stay sequential. This cost is inherent to the code
structure.

- Inter-process communications have a cost (initialization of buffers, physical time of message
propagation on the interconnection network, ...). This cost becomes potentially prohibitive when
the number of processes is too large for a given computation load.

Distribution: General knowledge about parallel computing @

- T
Scalability study: JCiproe)
T (Nprocs)
A .
fo% l
3 1
9 :
+ Strong scaling Q : I
i @ 1) 1 (2
(problem size is constant) M | ((1) impact of the
: > sequential parts
nb proc of the code
X (2) cost of the
) . ideal inter-process
-] : communications
+ Weak scaling -]
(problem size is proportional to the &::2 E T
number of processes) o M @
nb proc -

18

To estimate the impact of parallelization on a code, it is advised to conduct a scalability study.
This study links the execution time of the code in parallel to the number of processes.

Strong scaling: We maintain a fixed problem size and we trace the speedup based on the
number of processes. Tracing this scaling shows us the optimal number of processes to define
for a given problem.

Weak scaling: We increase the problem size proportionally to the number of processes and we
trace the efficiency based on the number of processes. Tracing this scaling shows us the
maximum problem size which the code is capable of processing.

Distribution: General knowledge about parallel computing

+ Bandwidths of the interconnection networks on Jean Zay:

NVLink Flaubert benchmark

pcle 2x25 GBIs 18

16 GBIS Mono-node Multi-node

OPA 10
12 GB/s

gpu 20pu 4gpu 8gpu 16gpu

Node 4 x V100 16GB Strong scaling

19

The cost of communications on Jean Zay.

Different types of interconnection networks quadri-GPU V100 nodes:
- NVLink ~ 2 x 25 GB/s — intra-node

- PCle ~ 16 GB/s — CPU/GPU

- OPA ~ 12 GB/s — inter-nodes

Conclusion: Good intra-node scalability expected; less good inter-node scalability.

On the right, example of strong scaling of the “Flaubert” classification bench (fine-tuning).
Executed on Jean Zay. lllustration of the divergence at the moment of changing to multi-nodes.

Distribution: General knowledge about parallel computing

+ Bandwidths of the interconnection networks on Jean Zay:

NVLink

?0°

OPA (- = 300 GB/s
3166 AL :

Node 8 x A100 80GB

6 switches

The cost of communications on Jean Zay.

Flaubert benchmark

Mono-node

Multi-node

T
1
|
1
1
[
1
1
1
'
|
|
i
|
'

Strong scaling

Different types of interconnection networks of octo-GPU 80GB A100 nodes:

- NVLink ~ 300 GB/s — intra-node
- PCle ~ 32 GB/s — CPU/GPU
- OPA ~ 12 GB/s — inter-nodes

Conclusion: Good intra-node scalability expected; less good inter-node scalability.

On the right, example of strong scaling of the “Flaubert” classification bench (fine-tuning).

Executed on Jean Zay. lllustration of the divergence at the moment of changing to multi-nodes.

20

Distributed training

General knowledge about parallel computing «

Data parallelism to distribute your training «

21

Distribution: Data parallelism @

Data parallelism
+ Training time speedup

* Model small enough to be contained on one GPU in memory

« Causes large batches (consequences on the training quality)

22

The main objective of data parallelism is to speed up the training.

Here, the model will be replicated on each GPU. Therefore, the model must be contained in
memory on 1 GPU.

The consequence of data parallelism is the augmentation of batch size in proportion to the
number of GPUs used. This implies adjusting certain parameters of the model. This will be
presented in the following chapters.

Distribution: Data parallelism

1 r
e ~— : ' 3)
2 . I AN € ?:" Vfiocat | | i Vigiobal @
1 1
o S o ! 1
2 Local "’U Prediction o Local ! ! Global N
o \Local dataset | batches Forward error Backward gradients ! : gradients | Optimizer)
- ‘ 4 € S | Viiocal | i Vigiobal ke
it ‘«‘" ‘J"" " i S
E Local ~@ Prediction - Local ' ! Global
e,;.,,:al dataset| batches Forward error Backward gradients ! s gradients | Optimizer D,
o-L’ . Allreduce
: Average
Global dataset
= 4—’ : d
‘:1,’) . I € 'f«.? Viiocal E E Vifglobal @
%] .5." 1 1
g Local Prediction | % Local ! | Global N
& | Local dataset batches Forward error Backward gradients ! ' gradients | Optimizer
23

Data parallelism consists of equally distributing the dataset on all the available processes so
that each process treats only one part of the data.

The batches created per process are called local batches here (i.e. contained in memory by
only one process). The propagation and backpropagation steps are effectuated from these local
batches, resulting in local gradient computation.

The local gradients are averaged on all the processes through AllReduce, a collective
communication reduction. The model parameters are updated based on these overall gradients.

Important: In data parallelism, a training iteration implies N local batches in parallel with N
representing the number of active processes. The overall batch size used for this training is,
therefore, N x batch_size per_gpu.

Distribution: Data parallelism @

Implementation of the data parallelism

+ PyTorch — DistributedDataParallel (integrated solution)
+ TensorFlow — MultiWorkerMirroredStrategy (integrated solution)

* Horovod (external librairy)

24

The data parallelism is implemented in classes within the PyTorch or TensorFlow libraries. It is
also possible to use Horovod in these two frameworks.

Distribution: Data parallelism

o+

Global dataset

Process 0

Process 1

Process N

T
a : -— i
@ Wi e g
I
Local Prediction Local |
\I_c-n:al dataset| batches Forward error Backward gradients !
s |
1
. | 8 vflacal :
1
Local Prediction | *-& Local |
\Local dataset| batches Forward error Backward gradients -
-
-
"
-
i
. | 8 Vfiocal i
Local Prediction Local |
Local dataset| batches Forward error Backward gradients !

Allreduce
Average

DistributedDataParallel

We will focus on the PyTorch DistributedDataParallel class.

i)

' . e WV

\ _(Viglobal ..

|\~ | 4ok

| Global | \X °

1 gradients | Optimizer | Updaie)

')
V] °

E fglobal @ : B

| Global | »

1 gradients | Optimizer | Update)

')

: a

' (g L

+ Vigiobat @ : »

1

| Global | B

' gradients | Optimizer | Update

25

Distribution: Data parallelism @

Execution of the parallel code — Slurm environment

+ Distribution example on : 4 nodes

3 GPUs per node “‘
2

Noeud NCCL
v é All Reduce

AdA
Task0,1,2

Slurm script

#SBATCH - -nodes=4 # nb nodes
#SBATCH --ntasks=12 # nb proc
#
#

vIE ¥

2 58 1

#SBATCH - -ntasks-per-node=3 nb proc / node cPU 01D |
#SBATCH --gres=gpu:3 nb GPUs / node
srun python script.py

4
E’.

YY)
Task9,10,11

f'u 012
e g @

S

Task 67,8
Yvy

.

m’
-

@0

Each GPU must be binded with one process. ‘

26

Example of a Slurm configuration for the parallel execution of a training.

Important: In data parallelism, one process is attached to each GPU and the script is launched
with the srun command.

Distribution: Data parallelism @

+ DistributedDataParallel (training distribution)

MASTER _PORT Slurm

MASTER _ADDR

: — SLURM_NTASKS
import torch.distributed

from torch.nn.parallel import DistributedDataParallel

initialize the parallel environment SLUN. EROCTD

torch.distributed.init_process_group(backend='nccl"’, »
init_method='env://',
world_size=world_size,

rank=rank)
bind one GPU per process SLURM_1OCALTD

torch.cuda.set_device(local_rank)

duplicate the model
ddp_model = DistributedDataParallel(model, device_ids=[local_rank])

27

Implementing data parallelism with DistributedDataParallel.

The parallel environment is initialized by the call to the init_process_group() function.

NCCL is the backend to use on a GPU architecture.

The MASTER_ADDR (name of the compute node which will be designated as “master” during
the inter-node communications) and MASTER_PORT (port number of the “master” node
chosen between 10000 and 20000 arbitrarily) variables must also be defined in the computing
environment.

The characteristic values of the parallel environment (world_size, rank and local_rank) are
recovered from the Slurm environment by the corresponding environment variables.

Distribution: Data parallelism @

- DistributedDataParallel (training distribution)
* idr_torch.py script from IDRIS

idr _torch.py
import os
import hostlist

get SLURM variables

size int(os.environ['SLURM NTASKS'])

rank int(os.environ['SLURM_ PROCID'])

local rank = int(os.environ[*SLURM LOCALID'])
cpus_per_task = int(os.environ['SLURM_CPUS_PER TASK'])

get node list from slurm
hostnames = hostlist.expand_hostlist(os.environ['SLURM JOB_NODELIST'])

get IDs of reserved GPU
gpu_ids = os.environ['SLURM STEP GPUS'].split(",")

define MASTER_ADD & MASTER_PORT
os.environ['MASTER ADDR'] = hostnames[0]

os.environ['MASTER PORT'] = str(12345 + int(min(gpu_1ids))) 5

IDRIS developed the idr_torch script to facilitate the interfacing with Slurm. It enables
recovering the values of the size, rank and local_rank environment variables and to define the
MASTER_PORT and MASTER_ADDR environment variables.

Distribution: Data parallelism

« DistributedDataParallel (training distribution)

MASTER_PORT

MASTER_ADDR
. . \ SLURM_NTASKS
import idr_torch ™
import torch.distributed |
from torch.nn.parallel import DistributedDataParallel Eﬁ SLURM_PROCID

initialize the parallel environment /
torch.distributed.init_process_group(backend="nccl’, 5
init_method='env://", ¥
world_size=idr torch.size, /
rank=idr_torch. rank) SLURM_LOCALID

bind one GPU per process Th——
torch.cuda.set_device(idritorch.localirank)qgi P
duplicate the model P
ddp_model = DistributedDataParallel(model, device ids=[idr torch.local rank])

29

Using the module idr_torch.py module.

Distribution: Data parallelism @

« What about torchrun? — Possible but cumbersome.

L] slurm.sh
#SBATCH --ntasks-per-node=1

GPUS_PER NODE=8
MASTER_ADDR=$(scontrol show hostnames $SLURM JOB_NODELIST | head -n 1)
MASTER_PORT=15000
CMD="train.py --argl 1 --arg2 2"
export LAUNCHER="torchrun --nproc_per_node $GPUS_PER_NODE \

--nnodes $SLURM _NNODES \

--rdzv_backend cl0d \

--rdzv_endpoint $MASTER_ADDR:$MASTER PORT"
srun bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD"

@;fser.add_argument("--local_rank“, type=int, help="Local rank. Necessary for using torchrun.")

WBRLD_RANK = int(os.environ['RANK'])
LOCAL_RANK = int(os.environ['LOCAL RANK']) .
WORLD_SIZE = int(os.environ['WORLD SIZE']) train.py

30

Distribution: Data parallelism

o+

Global dataset

Process 0

Process 1

Process N

-

(

\Lc-tal dataset

T

'

Ny '

. I 8 Vflacal :
I

Local Prediction & Local |

\I_c-n:al dataset| batches Forward error Backward gradients !
— «-— i

. | o 8 /’\ Vflacal :
%Vé; % .3 "

Local @ Prediction | ¢ Local |

batches Forward error Backward gradients -

Local dataset

Local

batches

Forward

3

Prediction
error

A Viiocal

Rl Local
Backward gradients

DistributedSampler

Distributing the dataset on all the available processes is managed by the DistributedSampler

class.

Allreduce
Average

i)
i A
Vfglobal e.»

E - @ : v
| Global | \X .
! gradients | Optimizer | Update >,
] e
: b
Viglobal A
E glo (: =
! Global bd
' gradients | Optimizer | L} Jate)
' A
v A
lobal 29
it
! Global v
1 gradients | Optimizer | Update
31

Distribution: Data parallelism @

+ DistributedSampler (distributing the input data)

import idr_torch

import torch.distributed

from torch.nn.parallel import DistributedDataParallel

from torch.utils.data.distributed import DistributedSampler

initialize the parallel environmenet
=

bind one GPU per process
e |

duplicate the model SLURM NTASKS
i - SLURM_PROCID

—~ #

+

distribute the input data
data_sampler = DistributedSampler(dataset, shuffle=True, = »
num_replicas=idr_torch.size, rank=idr_torch.rank)

The shuffling step is assigned to the Sampler.

32

Implementating DistributedSampler.

DistributedSampler will distribute the dataset to all of the processes according to the size and
rank parameters.

Important: The shuffling step (random reorganization of the data indexes) is attributed to the
Sampler and not to the DatalLoader.

Distribution: Data parallelism

+ DistributedSampler (distributing the input data)

» Parallel execution on 4 processes using the DistributedSampler:

dataset = [0, 1, ..., 99]
batch_size_per_gpu = 5
ntasks = 4

batch_size = 20

$ srun --ntasks=4 <...> pytho
Rank 0: Batch 0 tensor([
Rank 1: Batch 0 tensor([
Rank 2: Batch © tensor([
Rank 3: Batch 0 tensor([

h
0
1
2
3

Example of using DistributedSampler.

33

Distribution: Data parallelism @

* DistributedSampler (distributing the input data) + shuffling
* The index shuffling is performed by each GPU from a common seed.

» Parallel execution on 4 processes using the DistributedSampler:

dataset = [0, 1, ..., 99]
batch_size_per_gpu = 5
ntasks = 4

batch_size = 20

$ srun --ntasks=4 <...> python script.py

Rank 0: Batch 0 tensor([46, 36, 80, 17, 23])

Rank 1: Batch tensor([16, 64, 97, 12, 59])
tensor([91, 18, 49, 24, 4])

tensor([33, 73, 37, 81, 63])

0
Rank 2: Batch ©
Rank 3: Batch 0

34

Example of using DistributedSampler with random reorganization of the indices.

Distribution: Data parallelism @

* DistributedSampler (distributing the input data) + shuffling
* The index shuffling is performed by each GPU from a common seed.

for epoch in range(1,30):
A for i, batch in enumerate(dataloader):

>>> Epoch 1

Rank 0: Batch
Rank 1: Batch
Rank 2: Batch
Rank 3: Batch
>>> Epoch 2

Rank ©: Batch
Rank 1: Batch
Rank 2: Batch
Rank 3: Batch

tensor ([
tensor([
tensor ([
tensor([

tensor(
tensor(
tensor(
tensor(

46
16,
91
33

46,
16,
01,
33,

35

Important: The seed used by DistributedSampler for the shuffling step is calculated from the
epoch number but this number is not updated automatically during the training.

Distribution: Data parallelism

* DistributedSampler (distributing the input data) + shuffling
* The index shuffling is performed by each GPU from a common seed.

for epoch in range(1,30):
data sampler.set epoch(epoch)
for i, batch in enumerate(dataloader):

>>> Epoch 1

Rank 0: Batch
Rank 1: Batch
Rank 2: Batch
Rank 3: Batch

>>> Epoch 2

Rank ©: Batch
Rank 1: Batch
Rank 2: Batch
Rank 3: Batch

To update the epoch number and, therefore, the seed used for shuffling in the
DistributedSampler class, it is necessary to call the set_epoch() function at each epoch.

tensor([46
tensor([16,
tensor([91
tensor([33

tensor([49,
tensor([98,
tensor([2,
tensor([82,

@

36

Distribution: Data parallelism @

. Custom Sampler (inspired by DistributedSampler)

class MyCustomDistributedSampler(Sampler):

def _ init_ (self,dataset,world size,rank):
self.datalen = len(dataset)
self.world_size = world size
self.rank = rank

$ srun --ntasks=4 <...> script.
Rank 0: Batch 0 = tensor([0,
def _ len_ (self): Rank 1: Batch 0 = tensor([1,
return self.datalen Rank 2: Batch 0 = tensor([2
Rank 3: Batch 0 = tensor([3,

gel Teiter R (selE)
indices = list(range(self.datalen))
shuffle or not shuffle

indices = indices[self.rank:self.datalen:self.world size]
return iter(indices)

sampler = MyCustomDistributedSampler(dataset,idr_torch.size,idr_torch.rank)
37

If you use a custom Sampler, a distribution of indices is possible as illustrated. This example is
based on the DistributedSampler class.

TP_PI: Parallel computation of Pl using torch.distributed @

. Go into the directory tp_pi/

. Follow instructions in the notebook DL0-JZ_Compute_pi.ipynb
. Parallelize the code compute_pi.py using torch.distributed

. Compute m on 4 GPUs

38

TP2_1: Implement data parallelism in dlojz.py @

. Follow instructions in the notebook DL0-JZ_Jour2.ipynb
. Implement data parallelism in the script dlojz. py

« Measure the gain in time when using 4 GPUs

39

