
Graphs are everywhere

Hands-on Introduction to Deep Learning
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Data structures: Euclid and Text

Rebirth of Deep learning was thanks to pictures, text and speech recognition

Highly ordered data
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Neighborhood:
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Data structures: Data is not always euclidean
LIDAR Molecules

Meshes

Complex geometries

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges https://arxiv.org/abs/2104.13478  

Geometric deep learning

1

457

29

42

8
Neighborhood:

https://arxiv.org/abs/2104.13478


4
Data as a set of interconnected entities

Graphs are everywhere
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Graphs are everywhere

Social networks Molecules

Directions recommendation Knowledge graphs
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[1] Erbertseder, K., Reichold, J., Flemisch, B., Jenny, P., & Helmig, R. (2012). A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS One, 7(3), e31966.
[2] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle physics,” Mach. Learn.: Sci. Technol., vol. 2, no. 2, p. 021001, Jan. 2021, doi: 10.1088/2632-2153/abbf9a.
[3] A. Derrow-Pinion et al., “ETA Prediction with Graph Neural Networks in Google Maps,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management
New York, NY, USA, Oct. 2021, pp. 3767–3776. doi: 10.1145/3459637.3481916.
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Capillary networks

Many other fields

– Biology

– Recommendation systems

– Computer vision

– Medical diagnosis

– Robotics

– ... 
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Persons Atoms

Road sections Concepts
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Intersections

Node/vertex Some example of nodes

Many other fields

– Biology: An aminoacid in a protein

– Recommendation systems: A customer

– Computer vision: An object in a picture

– Medical diagnosis: Brain region (MRI)

– Robotics: Joints

– ... 
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Relationship Type of bond

Time Statement

Alice

Bob

Charly

Denis
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Decayed to
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Plants

HerbsCowsDogs

Animals

Vessel

Edge Some example of edges

Many other fields

– Biology: Distance between residues

– Recommendation systems: Connected 
customers

– Computer vision: Interaction between objects

– Medical diagnosis: Interaction between brain 
region (MRI)

– Robotics: connection between joints

– ... 
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Edge: orientation

A relationship can be symmetrical or not between nodes

Undirected graphs Directed graphs
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Alterna2 http://www.alterna2.com, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via Wikimedia Commons
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Edge: weight

Edges can carry information → edge weight
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Graphs store information: Features

Graphs can store information on nodes, edges and globally

It can be a number, a concept, ...

Globally Nodes Edges
Social Network Group of interest,... Name, age, job,... Is friend, follows, family,...

Molecule Is a drug, energy,... Atomic number,... Bond order,...

Citations Field,... Article,... Was cited,...

Particle physics Experiment,... Particle,... Decayed to,...

Motion capture Character,... Joints,... Is connected to,...

Natural language Paragraph,... Group of words,... Refers to,...
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Formal definition

G = (V, E): a set of nodes and edges

{v i}i∈V {ei }i∈E

{ y i
V } { y i

E } { y i
G }

Features



Question break
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Graph: Complexity

● The inner structure of a graph can vary a lot 
● The number of edges/nodes might vary a lot from one graph to another
● One single graph can contain several thousand of nodes/edges 
● ...

Number of neighbors
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Graph: Paths

Undirected graph Directed graph

A path is a sequence of edges connecting 2 nodes

cycle
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Graph: Node proximity and centrality

Node centrality
Measure how many paths goes through the node

Node proximity
● 1st order: w

i,j 
between node i and j

● 2nd order: similarity of neighborhood structure
● Higher orders possible



Question break
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Graph representation

?

1000110110
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Graph representation

Random numbering of nodes
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Graph representation

Undirected

Directed

Symmetric

Adjacency matrix W (i , j)={wi , j if there is an edge0 if not
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Graph representation

Adjacency list: [[5, 4],
       [8, 1],
       [4, 8], [4,3],
       [3, 4],
       [1, 7], [1, 2],
       [2, 4], [2, 6],
       [7,1],
       [6, 2],
       [9, 2]]

Edges: [0.4, 0.4, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                 0.4, 1.0, 1.0, 1.0]

Adjacency list
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Graph representation

● Scale V2  lot of space→
● Might be sparse
● Easy to find an edge 

● Scale E  less space→
● Might be difficult to find an edge 

V = number of nodes/vertices
E = number of edges

https://www.geeksforgeeks.org/comparison-between-adjacency-list-and-adjacency-matrix-representation-of-graph/

Adjacency list: [[5, 4],
 [8, 1],
 [4, 8], [4,3],
 [3, 4],
 [1, 7], [1, 2],
 [2, 4], [2, 6],
 [7,1],
 [6, 2],
 [9, 2]]

Edges: [0.4, 0.4, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                 0.4, 1.0, 1.0, 1.0]
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Graph representation

● Edge weights are stored either directly in the adjacency matrix, or in an independent tensor.

1.0
1.2

8.03.7
4.0

1.0 3.0
1.05.0

1.0
7.0

4.2

Adjacency matrix Adjacency list: [[5, 4],
                                   [8, 1],
      [4, 8], [4,3],
      [3, 4],
      [1, 7], [1, 2],
      [2, 4], [2, 6],
      [7,1],
      [6, 2],
      [9, 2]]

Edges: [0.4, 1.4, 2.4, 9.0, 1.0, 5.0, 1.7, 3.0,
                 0.4, 1.3, 7.0, 6.2]

● Information (features) on nodes and graphs will also be stored in independent tensors.

Nodes: [4.1, 4.2, 6.4, 1.0, 1.0, 5.0, 1.7, 
                3.0, 5.0]

Graph: [8.0]
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Useful Matrices

Adjacency W Weight of edges

Degree D Diagonal matrix with number 
of edges for each node 

Laplacian L D - W

Node Features X Information stored



Question break



Learning on Graphs
➔ Graph embedding
➔ Transductive and inductive learning
➔ Tasks on graph learning

Graphs are everywhere
➔ Complex data structures
➔ Basics of graph theory

A few examples
➔ Taxonomy of methods
➔ Graph convolution
➔ Message passing
➔ Graph Transformer

9.1

9.2

9.3

Roadmap



27

Graph embedding

● We need to find a representation of the graph that is processable 



28

Graph embedding
 Features stored in nodes/edges/graphs are not 

easily processed.

 We transform the features into a vector in 
the latent space (Dimension is a 
hyperparameter).

 The embedding has to be suited for the task  →
Learnable.

n1

n2

n3

n4

n1

n3

n2

n4

n1

n2

n3
n4

n1

n3

n2

n4
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Transductive learning
The model has access to the complete graph

It is not possible to add new nodes

Node labeling  
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Transductive learning
The model has access to the complete graph

It is not possible to add new nodes

Find new edges
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Inductive learning
● The model has access only to a part of the graph (train set)
● Adding new nodes is possible
● Generalization to new

graphs
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Tasks on nodes

?

 Labeling nodes in a graph 
(clustering)

 Find topic of a research paper 
(CORA, etc)

 Find bots in a social network
 …

 Labeling new nodes
 Perform regression 
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Tasks on edges

?

?

 Find relationships
 Contact map of aminoacids (Alphafold)
 Contact suggestion (social network)
 ETA for directions (regression)
 Relationships between segments in pictures
 ... 

G. Zhu et al., “Scene Graph Generation: A Comprehensive Survey.” arXiv, Jun. 22, 2022. doi: 10.48550/arXiv.2201.00443.
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 Predict properties of graphs
 Chemical properties (solubility, carcinogenic, 

possible drug) 
 Classification of the research field in an ego 

network
 ...

Tasks on graphs

Ego

Alter

Created by misirlou
from the Noun Project

Created by adindar
from the Noun Project



Question break



A few examples
➔ Taxonomy of methods
➔ Graph convolution
➔ Message passing
➔ Graph Transformer

Learning on Graphs
➔ Graph embedding
➔ Transductive and inductive learning
➔ Tasks on graph learning

Graphs are everywhere
➔ Complex data structures
➔ Basics of graph theory

9.1

9.2

9.3

Roadmap
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Taxonomy of methods

I. Chami, S. Abu-El-Haija, and B. Perozzi, “Machine Learning on Graphs: A Model and Comprehensive 
Taxonomy”.
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 Just like for images we can learn from neighborhood with a convolution.

 A bit more complex since the number of neighbors is unlikely to be 
constant.

 We want the operator to be permutation invariant.

Graph convolution

Step nStep n Step n+1
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Graph convolution

 Several steps are needed to 
retrieve information for distant 
nodes.

 For large graphs → a cutoff
 It is possible to use a virtual 

node connected to all other 
nodes. But in practice this 
becomes quickly intractable. 
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Message passing
 We have embeddings for each part of 

the graph (possibly different vector 
sizes).

 Each part can learn from the others via a 
transformation.

 Information is aggregated to form a 
message that the node/edge will send to 
others.

Edge embedding Node embedding

X =

Learnable  
transformation

Nn

En

Gn

Nn

Gn

En+1

Nn+1

Gn+1

n0

n0
'
= fNN fEN fGN( , ,
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Alphafold transformer

J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature, vol. 596, no. 7873, Art. no. 7873, Aug. 2021, doi: 10.1038/s41586-021-03819-2. 

https://doi.org/10.1038/s41586-021-03819-2
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GNoME

Merchant, A., Batzner, S., Schoenholz, S.S. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9

Generation of novel crystal structures
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GraphCast

     Remi Lam et al. Learning skillful medium-range global weather forecasting.Science382,1416-1421(2023).DOI:10.1126/science.adi2336

Prediction of the weather 
with temporal graphs



44

Graph Transformer Network

Dwivedi, Bresson A Generalization of Transformer Networks to Graphs 2020, https://arxiv.org/abs/2012.09699



Question break
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Resources

 Pytorch Geometric
 Deep Graph Library
 Graph Nets
 Spektral
 ...

Libraries
 https://logconference.org/
 https://ogb.stanford.edu/

 https://antoniolonga.github.io/Pytorch
_geometric_tutorials/

 https://docs.dgl.ai/tutorials/blitz

 Pytorch Geometric
 Deep Graph Library
 Graph Nets
 Spektral
 ...

Tutorials

https://logconference.org/
https://ogb.stanford.edu/
https://antoniolonga.github.io/Pytorch_geometric_tutorials/
https://antoniolonga.github.io/Pytorch_geometric_tutorials/
https://docs.dgl.ai/tutorials/blitz
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