

Objective of the section:

• Conceptual discovery of Reinforcement Learning

• Opening on Deep Reinforcement Learning

•

Duration: 45 minutes

Aspects addressed:

• Reinforcement Learning context uses

• Fields of application

• History or RL

• General concepts

• Limitations of traditional Reinforcement Learning

• Contributions of neural networks to RL

• Tools to train a RL algorithm

Objectives:

• Create an autonomous agent

• Able to make decisions in an environment

• Without a priori knowledge of the solution during training

Reinforcement Learning:

• Agent maximises rewards (indirect supervision)

• Learn from experience (trial and error)

Various fields of application:

• Games

• Finance

• Robotics

• Health

• Energy Navigation

• Education

• Business

Different environments:

• Real

• Virtual

• Completely known by the agent

• Partially observed by the agent

Various objectives:

• Prediction

• Optimisation

• Decision making

• Recommendation

• Control

3 aspects explored in parallel

• Try error

• Optimal control

• Game theory

1980’ :

• Reinforcement Learning algorithms

• Temporal Difference combined with Optimal Control

• Q Learning

2010’ :

• DRL breakthrough from Deepmind with DQN

• Multiple achievements against best players of various games

• State of the art algorithms in science (Ex : Protein folding with AlphaFold)

Environment :

• Real or virtual (simulated)

• Static or Dynamic

• Evolves over time (dynamic environment) or only after each action of the

agent (example: turn-based games)

• Can be partially or completely observed by the agent

• Rewards the agent according to the state of the environment

Model-based : Agent has access to a prediction of what is coming next. The

prediction can come from a learned model of the environment or simply given to

the agent

Model-free : Agent has no access to a prediction of the state transitions and

rewards.

Agent:

• A predefined set of possible actions

• An action policy

o Determines which action to choose in response to a state of the

environment

o The action policy used for training may be different from the one

that will eventually be used.

o It can be deterministic or stochastic.

Trajectories: changes in the environment according to the agent's actions

Rewards: Defined by a law taking into account the state generated by the agent's

action

Value: Evaluates the value (potential) of a state of the environment according to

the expectation of optimal gain from this state

Q function: Evaluates the Quality of a chosen action in a state of the environment

Bellman Equations: refer to a set of equations that decompose the value function

into the immediate reward plus the discounted future values.

Dynamic Programming : need to know the environment dynamics

Monte Carlo:

• Need to finish an episode before an update

• High Variance, no bias

• Better for non-Markov

Temporal Dynamics:

• Can learn from incomplete episodes

• Low bias, low variance

• Better exploit of Markov properties

Behaviour Policy : The policy used to determine the actions followed by the agent

at a given state.

Target Policy : The policy the agent is learning.

On Policy : Target Policy == Behavior Policy

Off Policy : Target Policy != Behavior Policy

Example : Tic-Tac-Toe

Liste of states and possible actions at each round

1st round: Nothing on the grid, Actions : 9 actions possible

2nd round: 9 existing states (assuming cross always starts), 8 possible actions

…

For each combination, evaluate its potential by increasing its value if it lead to a

better situation or the opposite.

Policy parameters are optimized using gradient ascent.

Gradient can be applied on finite or infinite-horizon expected returns.

In this exemple, the advantage function is used but it could also be the Value or Q

functions.

Various algorithms such as Actor-Critic uses value optimization and policy

optimization together.

Limits :

• Rewards :

o Can be difficult to define

o If rare, experiences do not improve the agent

o If intermediate rewards are created, they may induce bias and

limit the agent's performance

• Exploration-Exploitation trade-off:

o Explore unknown choices or choices with low short term reward

gain to expect high long term gains

o Choose at each point in time the strategy that has yielded the

most rewards so far

• Q table :

o Combinatorial of action-states too high to be stored and even

explored

Solutions:

• Attenuation factor on rewards as a function of time

• epsilon-greedy algorithm

• Deep Reinforcement Learning

Gym (OpenAI) :

• an opensource toolkit for developing and comparing reinforcement

learning algorithms

• provides a standard API to communicate between algorithms and

environments

• a standard set of environments

Useful to create a specific environment for a specialized problematic while having

a generic pipeline with standard methods and variables.

Principle: approximate the Q-table (state-action space) with a neural network

Advantages :

• Reinforcement Learning applicable to complex and real problems

• Use of "raw" observations (example: pixel of a video game)

o Helps generalization by learning a "representation" of the

environment

Limitations:

• Difficult to converge towards a solution

• Slow to train

• Generalization not so obvious

Replication of a supervised learning mechanism

How it works :

1. Environment-Model Interaction

2. Store in memory until a batch is created

3. Update the model with the batch of experiments

Limitation: Unstable learning

Solution:

Two models:

- 1st model used for simulations

- 2nd model updated frequently

The 1st model is occasionally updated directly with the new weights of the 2nd

model.d

Agent can learn the world (model based).

Hindseight experience replay : learn from rare and low rewards

Learn from both good and bad episodes

Train a general AI capable of tackling multiple problems

Objective: Learning the objective rather than the task

Input: Environmental states and actions chosen by an expert

Output: The rewards to be predicted

