
 
 

Objective of the section: 

• Conceptual discovery of Reinforcement Learning 

• Opening on Deep Reinforcement Learning 

•  

Duration: 45 minutes 

 

Aspects addressed: 

• Reinforcement Learning context uses 

• Fields of application 

• History or RL 

• General concepts 

• Limitations of traditional Reinforcement Learning 

• Contributions of neural networks to RL 

• Tools to train a RL algorithm 

 

 
 

Objectives:  

• Create an autonomous agent  

• Able to make decisions in an environment 

• Without a priori knowledge of the solution during training 

 

Reinforcement Learning: 

• Agent maximises rewards (indirect supervision) 

• Learn from experience (trial and error) 

 

                                     

                         

       
                                                             

                

        

              

         

                



 
 

Various fields of application: 

• Games 

• Finance 

• Robotics 

• Health 
 

• Energy Navigation 

• Education 

• Business 
 

Different environments: 

• Real 

• Virtual 

• Completely known by the agent 

• Partially observed by the agent 

 

Various objectives: 

• Prediction 

• Optimisation 

• Decision making 

• Recommendation 

• Control 

 

 
 

3 aspects explored in parallel 

• Try error 

• Optimal control 

• Game theory 

 

1980’ :  

• Reinforcement Learning algorithms 

• Temporal Difference combined with Optimal Control 

• Q Learning 

 

2010’ :  

• DRL breakthrough from Deepmind with DQN 

• Multiple achievements against best players of various games 

• State of the art algorithms in science (Ex : Protein folding with AlphaFold) 

 

 

 

 

 

           
                                                             

                               
                                                             

       
       

             

        

    
             

        



 
 

Environment : 

• Real or virtual (simulated) 

• Static or Dynamic 

• Evolves over time (dynamic environment) or only after each action of the 

agent (example: turn-based games) 

• Can be partially or completely observed by the agent 

• Rewards the agent according to the state of the environment 

 

 

 

 

 

 

 

 

 
 

Model-based : Agent has access to a prediction of what is coming next. The 

prediction can come from a learned model of the environment or simply given to 

the agent 

 

Model-free : Agent has no access to a prediction of the state transitions and 

rewards. 

 

 

 

           
                                                             

        
                                                             

                                                                                         



 
 

Agent: 

• A predefined set of possible actions 

• An action policy 

o Determines which action to choose in response to a state of the 

environment 

o The action policy used for training may be different from the one 

that will eventually be used. 

o It can be deterministic or stochastic. 

 

 

 

 

 

 

 

 

 

 

 
 

Trajectories: changes in the environment according to the agent's actions 

 

Rewards: Defined by a law taking into account the state generated by the agent's 

action 

 

Value: Evaluates the value (potential) of a state of the environment according to 

the expectation of optimal gain from this state 

 

Q function: Evaluates the Quality of a chosen action in a state of the environment 

 

Bellman Equations: refer to a set of equations that decompose the value function 

into the immediate reward plus the discounted future values. 

 

           
                                                             

                

        

              

         

              

       
 

             
 

     

               
    

           

        
                                                             

                                                                 

              

         

                        

                                  

         

          

                



 
 

Dynamic Programming : need to know the environment dynamics 

 

Monte Carlo:  

• Need to finish an episode before an update 

• High Variance, no bias 

• Better for non-Markov 

 

Temporal Dynamics: 

• Can learn from incomplete episodes 

• Low bias, low variance 

• Better exploit of Markov properties 

 

 

 

 

 

 

 
 

Behaviour Policy :  The policy used to determine the actions followed by the agent 

at a given state. 

 

Target Policy : The policy the agent is learning. 

 

On Policy : Target Policy  == Behavior Policy 

 

Off Policy : Target Policy != Behavior Policy 

 

 

 

 

 

 

 

                                                     
                                                             

                                                           

                
                                                              

          
                                                        

      

          
                                               
                                                     

           



 
 

 

Example : Tic-Tac-Toe 

Liste of states and possible actions at each round 

1st round: Nothing on the grid, Actions : 9 actions possible 

2nd round: 9 existing states (assuming cross always starts), 8 possible actions  

… 

For each combination, evaluate its potential by increasing its value if it lead to a 

better situation or the opposite. 

 

 

 

 

 

 

 

 

 

 

 
 

Policy parameters are optimized using gradient ascent. 

 

Gradient can be applied on finite or infinite-horizon expected returns. 

 

In this exemple, the advantage function is used but it could also be the Value or Q 

functions. 

 

 

Various algorithms such as Actor-Critic uses value optimization and policy 

optimization together. 

 

 

 

 

 

 

 

 

          
                                                              

             

     

                                         
                                                              

                            

                                  

                 



 
 

Limits :  

• Rewards : 

o Can be difficult to define  

o If rare, experiences do not improve the agent  

o If intermediate rewards are created, they may induce bias and 

limit the agent's performance 

• Exploration-Exploitation trade-off:  

o Explore unknown choices or choices with low short term reward 

gain to expect high long term gains 

o Choose at each point in time the strategy that has yielded the 

most rewards so far  

• Q table : 

o Combinatorial of action-states too high to be stored and even 

explored 

Solutions: 

• Attenuation factor on rewards as a function of time 

• epsilon-greedy algorithm 

• Deep Reinforcement Learning 

 
 

Gym (OpenAI) :  

• an opensource toolkit for developing and comparing reinforcement 

learning algorithms 

• provides a standard API to communicate between algorithms and 

environments 

• a standard set of environments 

 

Useful to create a specific environment for a specialized problematic while having 

a generic pipeline with standard methods and variables. 

 

 

 

 

 

 

 

 

 

 

                     
                                                              

                     
                                                              

     
      
        
              
     
                       



 

 
 

Principle: approximate the Q-table (state-action space) with a neural network 

 

Advantages : 

• Reinforcement Learning applicable to complex and real problems 

• Use of "raw" observations (example: pixel of a video game)  

o Helps generalization by learning a "representation" of the 

environment 

 

Limitations: 

• Difficult to converge towards a solution 

• Slow to train 

• Generalization not so obvious 

 

 

 

 

 
 

 

Replication of a supervised learning mechanism  

 

How it works : 

1.  Environment-Model Interaction 

2. Store in memory until a batch is created 

3. Update the model with the batch of experiments 

 

Limitation: Unstable learning 

 

Solution:  

Two models: 

- 1st model used for simulations 

- 2nd model updated frequently 

The 1st model is occasionally updated directly with the new weights of the 2nd 

model.d 

 

              
                                                              

             

        

              

              

                                                                    

                        
                                                              

       
      

             

       

      
        



 
 

Agent can learn the world (model based). 

 

Hindseight experience replay : learn from rare and low rewards 

 

Learn from both good and bad episodes 

 

Train a general AI capable of tackling multiple problems  

 

 

 

 

 

 

 

 

 

 

 

 
 

Objective: Learning the objective rather than the task 

 

Input: Environmental states and actions chosen by an expert 

Output: The rewards to be predicted 

 

 

 

                         
                                                              

                             
                                                              

                  

       


