OpenACC for GPU: an introduction

Olga Abramkina, Rémy Dubois, Thibaut Véry

Jun 02, 2023

I

1

IT

Day 1

Introduction to GPU programming with directives

1.1 WhatisaGPU?
1.2 Programmingmodels
1.3 OpenACC i e
1.4 OpenMPtarget
1.5 Hostdriven Language
1.6 Levels of parallelism
1.7 Importantnotes

Get started with OpenACC

2.1 OpenACCdirectives v v v v
2.2 Loopsparallelism
2.3 Managing data in compute regions
2.4 Exercise: Gaussian blurring filter
2.5 Reductions with OpenACC
Manual building of an OpenACC code

3.1 Build with NVIDIA compilers
3.2 BuildwithGCCcompilers
33 EXErciseo i e e e

Data management

4.1 Why do we have to care about data transfers?

4.2 The easy way: NVIDIA managed memory

4.3 Manual datamovement

Hands-on Game Of Life

51 Whattodo

52 Solution e
Day 2

Compute constructs

6.1 Giving more freedom to the compiler: acc kernels
6.2 Running sequentially on the GPU? The acc serial compute construct
...................... 57

6.3 Data region associated with compute constructs

Variables status (private or shared)

7.1 Default status of scalar and arrays

CONTENTS

13

...................... 13
...................... 16
...................... 17
...................... 18
...................... 23

27

...................... 27
...................... 29
...................... 30

31

...................... 31
...................... 32
...................... 32

43

...................... 44
...................... 48

53

55

......................... 55

............... 56

59

7.2 Private variables e e e
T3 Caution o e e e e e e e e e e

8 Advanced loop configuration

.1 SYNtax e e e e e e e e e e e e
8.2 RESIICHONS o o e e e e e e e e e e e e e e e e e
83 Example oL e e e e e e
8.4 EXEICISC i o e e e e e e e e

9 Using OpenACC in modular programming

9.1 acc routine <max_level_of_parallelism>,
9.2 Named acc routine (name) <max_level_of_parallelism>
9.3 Directives inside an acc routine i i e e
0.4 EXEICISC . . o v v v v i e e e e e e e e e e e e e

10 Profiling your code to find what to offload
10.1 Developmentcycle e e e e
10.2 Quick descriptionof the code L e e e
10.3 Profiling CPU code o e e e e e e e
10.4 The graphical profiler
10.5 Profiling GPU code: other tools e e

11 Multi GPU programming with OpenACC
T1.1 Disclaimer o e e e e e e e e e e e e e e e
11.2 Introduction o o e e e e e e e e e e e e e e e e
11.3 APIdescription o o v i i e e e e e e
11.4 MPIStrate@y o o v o o e
11.5 Multithreading strate@y o v e e e e e e e e e e e e e e e
11.6 EXercise o i e e e e e e e e e
11.7 GPUtoGPUdatatransfers e e e e

12 Generate Mandelbrot set
12.1 Introduction e e e e e e e
122 Whattodo e e e e e
12.3 Solution e e e e e e

13 Generate Mandelbrot set
13.1 Introduction e e e e e e e e
132 Whattodo e e e e e e
13.3 Solution o e e e e e e

III Day3

14 Performing several tasks at the same time on the GPU
14.1 asyncclause e e e e e e e e e e e e
142 waitclause e e e e e e
143 wait direCtive o e e e e e e e e e
[4.4 EXEICISE . . . o v v vt e e e e e e e e e e e e e e e e
14.5 Advanced NVIDIA compiler option to use Pinned Memory: —~gpu=pinned

15 Atomic operations
IS.1 Syntax o e e e e e e e e e e e
15.2 ReStriCtONS o o e
153 EXEICISE o o i o o e e e e e e

73
73
73
74
74
77

79
79
79
79
79
80
81
81

87
87
88
90

93
93
94
96

99

103
103
104
105
105
108

16

17

18

19

Deep copy
16.1 Top-down deep COPY . . « v v v v v v v e e e e e e e e e e e e e e e e e e
16.2 Deep copy with manual attachment

Using CUDA libraries
17.1 acc host_data use_devicCe v v i v i i it e e e e e e e e e e e e
17.2 Example with CURAND 0 0 o e

Loop tiling

I8.1 Syntax o o e e e e e e e e e
18.2 ReSIrCtIONS o e
183 Example e e e e e e
184 EXEICISE o v i i i e e e e e e e e e e
18.5 Solution e e e e e e e

Hands-on MD simulation of Lennard-Jones system
19.1 Whattodo e e e e e e e e e e
19.2 Solution o e e e e e

IV Resources

20

21

Resources

20.1 BOOKS e e e e e e e
20.2 WEDIeSOUICES o i i it e e e e e e e e e e e e e e e e
20.3 Porting your code during NVIDIA hackathons
20.4 Contacts (firstname.name@idris.fr)

The most important directives and clauses

211 DIrective SYNtAX . . v v v v v v e
21.2 Creating kernels: Compute CONSIIUCES . . .« v v v v v v v vt e e e e e e e e e e e e e
21.3 Managingdata e e e e
214 Managin@ loops oo e e e e e e e e e
21.5 GPUTOULINES v v vt e e i e e e e e e e e e e e e
21.6 Asynchronous behavior e e e e e e e e e
21.7 Using data on the GPU with GPU aware libraries
21.8 AtOMIC CONSITUCT . . . v v v v v it e

115
115
124

131
131
131

135
136
136
136
142
143

145
145
154

165

167
167
167
167
167

OpenACC for GPU: an introduction

Structure of the archive

* C: Notebooks in C language
¢ Fortran: Notebooks in Fortran
* pictures: All figures used in the notebooks
 examples: The source code for the exercises
-C
— Fortran
* utils:
— idrcomp: the source code for the utility to run %%irdrrun cells
— config: configuration file

— start_jupyter_acc.py: start the jupyter server

On Jean Zay

You have to execute the following lines to be able to run the notebooks

cd SWORK/OpenACC_GPU

module load python/3.7.6

conda activate cours_openacc
You have to start once ipython before starting
you can exit ipython just after

ipython

./utils/start_jupyter_acc.py

A password is printed and will be useful later.
Once it is done you can start a browser and go to https://idrvprox.idris.fr.
* The first identification is with the login and the password you were given.

¢ The second identification is with the password generated with . /utils/start_Jjupyter_acc.py.

List of notebooks

Day 1

¢ Introduction: You will find here some information about:
— Hardware
— Short history of OpenACC and OpenMP for GPU
— Programming model

The notebook is purely informational.

CONTENTS 1

https://idrvprox.idris.fr

OpenACC for GPU: an introduction

Getting started: You should start here. The notebook presents quickly the main features you need to use OpenACC
on the GPU.

Manual Building: The training uses JupyterLab and you won’t need to compile anything by hand. However it is
important to know how to do it.

Data Management: The main bottleneck when porting to GPU will surely be data transfers. Here we see the
different way to deal efficiently with this issue.

Hands-on Game of Life: Conway’s Game of Life with OpenACC.

Day 2

Other Compute Constructs: There are several ways to create kernels with OpenACC. We presented one during the
first day (acc parallel) and here are the other (acc kernelsand acc serial).

Variable status: It is important to keep in mind the default variables statuts in the kernels. We also learn how to
privatize variables to get correct algorithms.

Kernels/Loop configuration: By default the compiler and the runtime set the parameters for the kernels and loops.
Even though we do not advise to do it manually we will teach you how to do.

GPU Routines: Functions and subroutines can be called inside kernels only if they were compiled for the GPU.
The porting process requires that you can profile the code.

Feeling a bit tight on one GPU? Try using several GPUs.

MultiGPUs with Mandelbrot either MPI or OpenMP.

Day 3

The GPU might be able to run several kernels at the same time with a feature called asynchronism

If you need to make sure that only one thread reads/writes a variable at a time then atomic operations are for you
Are you using C structures or Fortran derived type? Then manual deep copy will interest you.

You can use CUDA libraries with your OpenACC project

Your code is reusing data frequently, why not trying to improve data locality with a single clause tiles

A small Lennard-Jones gas simulator kleineMole

Notebooks

The training course uses Jupyter notebooks as a support.

We wrote the content so that you should be able to do the training course alone in the case we do not have time to see
everything together.

The notebooks are divided into several kinds of cells:

Markdown cells: those are the text cells. The ones we have written are protected against edition. If you want to
take notes inside the notebook you can create new cells.

Python code cells: A few cells are present with python code inside. You have to execute them to have the intended
behavior of subsequent cells

CONTENTS

https://jupyter.org/

OpenACC for GPU: an introduction

¢ idrrun code cells: The cells in which the exercises/examples/solutions are written. They are editable directly and
when you execute it the code inside is compiled and a job is submitted.

Note about idrrun cells

All idrrun cells with code inside have a comment with the name of the source file associated. You can find all source files
inside the folders:

» examples/C
 examples/Fortran

If you do not wish to use the notebooks to edit the exercises, you can always edit the source files directly. Then you will
need to proceed manually with the compilation (a makefile is provided) and job submission.

Configuration

Some configuration might be needed in order to have the best experience possible with the training course.

You should have a README.md file shipped with the content, which explains all files that need to be edited.

CONTENTS 3

OpenACC for GPU: an introduction

4 CONTENTS

Part I

Day 1

CHAPTER
ONE

INTRODUCTION TO GPU PROGRAMMING WITH DIRECTIVES

1.1 What is a GPU?

Graphical Processing Units (GPU) have been designed to accelerate the processing of graphics and have boomed thanks
to video games which require more and more computing power.

For this course we will use the terminology from NVIDIA.

GPUs have a large number of computing core really efficient to process large matrices. For example, the latest generation
of NVIDIA GPU (Hopper 100 SXMS5) have 132 processors, called Streaming Multiprocessors (SM) with different kinds
of specialized cores:

Core Type | Number per SM
FP32 128

FP64 64

INT32 64

TensorCore | 4

Total 176

It means that you have roughly 19k cores on one GPU.

At max, CPUs can have a few 10s of cores (AMD Epyc Rome have 64 cores). The comparison with the number of cores
on one CPU is not fully relevant since their architecture differs a lot.

This is the scheme for one streaming multiprocessor in an NVIDIA H100 GPU.

TENSOR CORE
4" GENERATION

TENSOR CORE TENSOR CORE

4" GENERATION 4" GENERATION

https://www.nvidia.com/en-us/data-center/h100/

OpenACC for GPU: an introduction

1.2 Programming models

Applications ‘
IProgramming effort and technical expertise >
Libraries Directives Programming
* CcuBLAS languages
* CuSPARSE * OpenACC
* CcuRAND * OpenMP 5.0 *« CUDA
¢ AmgX * OpenCL

* MAGMA

* Minimum change in the code * Portable, simple, low * Complete rewriting, complex
* Maximum performance intrusiveness * Non-portable
« Still efficient + Optimal performance

You have the choice between several programming models to port your code to GPU:
¢ Low level programming language (CUDA, OpenCL)
¢ Programming models (Kokkos)
* GPU libraries (CUDA accelerated libraries, MAGMA, THRUST, AmgX)
¢ Directives languages (OpenACC, OpenMP target)

Most of the time they are interoperable and you can get the best of each world as long as you take enough time to learn
everything :).

In this training course we focus on the directives languages.

1.2.1 Low level programming languages: CUDA, OpenCL
CUDA

Introduction of floating-point processing and programming capabilities on GPU cards at the turn of the century opened
the door to general purpose GPU (GPGPU) programming. GPGPU was greatly democratized with the arrival of the
CUDA programming language in 2007.

CUDA is a language close to C++ where you have to manage yourself everything that occurs on the GPU:
* Allocation of memory
¢ Data transfers
» Kernel (piece of code running on the GPU) execution

The kernel configuration has to be explicitly written in your code.

my_kernel<<<kernelconfig>>> (arguments) ;

All of this means that if you want to port your code on GPU with CUDA you have to write specialized portions of code.
With this you have access to potentially the full processing power of the GPU but you have to learn a new language.

Since it is only available on NVIDIA GPUs you lack the portability to other platforms.

8 Chapter 1. Introduction to GPU programming with directives

https://docs.nvidia.com/cuda/index.html

OpenACC for GPU: an introduction

OpenCL
OpenCL have been available since 2009 and it was developed to write code that can run on several kind of architectures
(CPU, GPU, FPGA, ...).

OpenCL is supported by the major hardware companies so if you choose this option you can alleviate the portability issue.
However, you still have to manage by hand everything happening on the GPU.

clStatus = clEnqueueNDRangeKernel (command_gqueue, kernel, 1, NULL, &global_size, &
~local_size, 0, NULL, NULL);

1.2.2 Using libraries
Let say that your code is spending a lot of time in only one type of computation (linear algebra, FFTs, etc). Then it is
interesting to look for specialized libraries developed for this kind of computation:

e NVIDIA CUDA libraries: FFT, BLAS, Sparse algebra, ...

¢ MAGMA: Dense linear algebra

* etc

The implementation cost is much lower than if you have to write your own kernels and you get (hopefully) very good
performance.

1.2.3 Directives
In the general case where the libraries do not fulfill an important part of your code, you can choose to use OpenACC or
OpenMP 4.5 and above with the target construct.

With this approach you annotate your code with directives considered as comments if you do not activate the compiler
options to use them.

For OpenACC:

#pragma acc parallel loop
for (int i=0; i<size; ++1i)
{
// Code to offload to GPU
}

For OpenMP target:

#pragma omp target teams distribute parallel for
for (int i=0; i<size; ++1i)
{
// Code to offload to GPU
}

The implementation cost is much lower than the low level programming languages and usually you can get up to 95% of
the performance you would get by writing your own specialized code.

Even though the modifications in your code will be lower than rewriting everything, you have to keep in mind that some
changes might be necessary to have the best performance possible. Those changes can be in:

* the algorithms

1.2. Programming models 9

https://www.khronos.org/opencl/
https://docs.nvidia.com/#nvidia-cuda-libraries
https://icl.cs.utk.edu/magma/
https://www.openacc.org/
https://www.openmp.org/

OpenACC for GPU: an introduction

« the data structures

e etc

1.3 OpenACC

The first version of the OpenACC specification was released in November 2011. It was created by:
e Cray
* NVIDIA
e PGI (now part of NVIDIA)
* CAPS
In November 2022 they released the 3.3 specification.

1.3.1 Compilers

Several compilers are available to produce OpenACC code.
¢ HPE Cray Programming environment (for HPE/Cray hardware)
e NVIDIA HPC SDK (formerly PGI)
* GCC10
e AMD Sourcery CodeBench
e etc

You have to be careful since the maturity of each compiler and the specification they respect can change.

Disclaimer

The training course is based on version 2.7 of the specification.

Here we will mainly use the HPC compilers from NVIDIA available on their website which fully respects specification
2.7. You will be able to test the GCC compilers which support specification 2.6

1.4 OpenMP target

The first OpenMP specification which supports GPU offloading is 4.5 released in November 2015. It adds the target
construct for this purpose.

The newest specification (november 2021) for OpenMP is 5.2.

10 Chapter 1. Introduction to GPU programming with directives

https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.3-final.pdf
https://www.openacc.org/tools
https://pubs.cray.com/category/pe-tile
https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/gcc-10/
https://www.plm.automation.siemens.com/global/en/products/embedded-software/sourcery-codebench-lite-downloads.html
https://developer.nvidia.com/hpc-sdk
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

OpenACC for GPU: an introduction

1.4.1 Compilers
The list of compilers supporting OpenMP is available on the OpenMP website. You have to check if the target (or
offloading) is supported.
The main compilers which support offloading to GPU are:
e IBM XL for C/C++ and Fortran
* GCC since version 7
* CLANG
e NVIDIA HPC SDK (formerly PGI)

¢ Cray Programming environment (for Cray hardware)

1.5 Host driven Language

OpenACC is a host driven programming language. It means that the host (usually a CPU) is in charge of launching
everything happening on the device (usually a GPU) including:

¢ Executing kernels
* Memory allocations

¢ Data transfers

Launch Launch /Launch
kernell kernel2 / kernel3

1.6 Levels of parallelism

On the GPU you can have 4 different levels of parallelism that can be activated:
 Coarse grain: gang
¢ Fine grain : worker
* Vectorization : vector
» Sequential : seq

One Gang is made of several Workers which are vectors (with by default a size of one thread). You can increase the
number of thread by activating the Vectorization.

Inside a kernel gangs have the same number of threads running. But it can be different from one kernel to another.

So the total number of threads used by a kernel is (Number_of_Gangs) * (Number_of_Workers) x
(Vector_Length).

1.5. Host driven Language 11

https://www.openmp.org/resources/openmp-compilers-tools/
https://www.ibm.com/products/c-and-c-plus-plus-compiler-family
https://www.ibm.com/products/xl-fortran-linux-compiler-power
https://gcc.gnu.org/
https://clang.llvm.org/
https://developer.nvidia.com/hpc-sdk
https://pubs.cray.com/category/pe-tile

OpenACC for GPU: an introduction

[acc ... num_gangs(1) num_workers(1) vector_length(32)

acc ... num_gangs(1) num_workers(1) vector_length(128)]

(acc ... num_gangs(2) num_waorkers(1) vector_length(32))

1.7 Important notes

There is no way to synchronize threads between gangs.

For example on NVIDIA GPUS, groups of 32 threads are formed.

Usually NVIDIA compilers set the number of workers to one.

1.7.1 Information about NVIDIA devices

The compiler may decide to add synchronization within the threads in one gang.

The threads of a worker work in SIMT mode. It means that all threads run the same instruction at the same time.

The nvaccelinfo command gives interesting information about the devices available.

For example, if you run it on Jean Zay A100 partition.

$ nvaccelinfo

Number:

Name :

Revision Number:

Global Memory Size:

Number of Multiprocessors:
Concurrent Copy and Execution:
Total Constant Memory:

Total Shared Memory per Block:
Registers per Block:

Warp Size:

Maximum Threads per Block:
Maximum Block Dimensions:

Device
Device
Device

Maximum Grid Dimensions:
Maximum Memory Pitch:
Clock Rate:

Concurrent Kernels:
Memory Clock Rate:

L2 Cache Size:

Max Threads Per SMP:
Async Engines:

Managed Memory:

Default Target:

7
NVIDIA A100-SXM4-80GB
8.0

85051572224

108

Yes

65536

49152

65536

32

1024

1024, 1024, o4
2147483647 x 65535 x 65535
2147483647B

1410 MHz

Yes

1593 MHz

41943040 bytes

2048

3

Yes

cc80

12

Chapter 1. Introduction to GPU programming with directives

https://en.wikipedia.org/wiki/Single_instruction,_multiple_threads

CHAPTER
TWO

GET STARTED WITH OPENACC

What will you learn here?

1.

2.1

Open a parallel region with #pragma acc parallel

. Activate loop parallelism with #pragma acc loop

2
3.
4

Open a structured data region with #pragma acc data

. Compile a code with OpenACC support

OpenACC directives

If you have a CPU code and you want to get some parts on the GPU, you can add OpenACC directives to it.

A directive has the following structure:

Sentinel Clause(option, ...) ...
C/C++:#pragma acc copyin(array) private(var) ...
Fortran: 1$acc copyin(array) private(var) ...

If we break it down, we have these elements:

The sentinel is special instruction for the compiler. It tells it that what follows has to be interpreted as OpenACC

The directive is the action to do. In the example, parallel is the way to open a parallel region that will be offloaded
to the GPU

The clauses are “options” of the directive. In the example we want to copy some data on the GPU.

The clause arguments give more details for the clause. In the example, we give the name of the variables to be
copied

Some directives need to be opened just before a code block.

#pragma acc parallel

{

}

// code block opened with '{' and closed by '}’

13

OpenACC for GPU: an introduction

2.1.1 A short example
With this example you can get familiar with how to run code cells during this session. $%idrrun has to be present at
the top of a code cell to compile and execute the code written inside the cell.

The content has to be a valid piece of code otherwise you will get errors. In C, if you want to run the code, you need to
define the main function:

int main (void)
{

//

s

or:

int main(int argc, char** argv)
{

//

}

The example initializes an array of integers.
%$%idrrun
// examples/C/Get_started_init_array_exercise.c
#include <stdio.h>
int main (void)
{

int size = 100000;

int array([size];

for (int i=0; i<size; ++1i)

array[i] = 2 * 1i;

printf (" ", array([21]);

Now we add the support of OpenACC with —a option of idrrun.

To offload the computation on the GPU you have to open a parallel region with the directive acc parallel and define
a code block which is affected.

Modify the cell below to perform this action. No clause are needed here.

$%idrrun -a
// examples/C/Get_started_init_array_exercise_acc.c
#include <stdio.h>
int main (void)
{
int size = 100000;
int arrayl[sizel;
// Modifications from here
for (int i=0; i<size; ++1i)
array[i] = 2 * 1i;
printf ("%d", array[12]);

14 Chapter 2. Get started with OpenACC

OpenACC for GPU: an introduction

2.1.2 Solution

%$%idrrun -a
// examples/C/Get_started_init_array_solution_acc.c
#include <stdio.h>
int main (void)
{
int size = 100000;
int array([size];
#pragma acc parallel
{
for (int 1=0; i<size; ++1i)
array[i] = 2 * i;
}
printf (" ", arrayl[12]);

Which is equivalent to:

%$%idrrun -a
// examples/C/Get_started_init_array_solution_acc_2.c
#include <stdio.h>
int main (void)
{
int size = 100000;
int arrayl([size];
#pragma acc parallel
{
#pragma acc loop
for (int i=0; i<size; ++1)
array[i] = 2 * 1i;
}
printf (" ", arrayl[12]);

2.1.3 Let’s analyze what happened.

The following steps are printed:
1. the compiler command to generate the executable
2. the output of the command (displayed on red background)
3. the command line to execute the code
4. the output/error of the execution

We activated the verbose mode for the NVIDIA compilers for information about optimizations and OpenACC (compiler
option -Minfo=all) and strongly recommend that you do the same in your developments.

The compiler found in the main function a kernel (this is the name of code blocks offloaded to the GPU) and was able
to generate code for GPU. The line refers to the directive acc parallel included in the code.

By default NVIDIA compilers (formerly PGI) make an analysis of the parallel region and try to find:
* loops that can be parallelized

¢ data transfers needed

2.1. OpenACC directives 15

OpenACC for GPU: an introduction

* operations like reductions

e etc

It might result in unexpected behavior since we did not write explicitly the directives to perform those actions. Never-
theless, we decided to keep this feature on during the session since it is the default. This is the reason you can see that a
directive acc loop (used to activate loop parallelism on the GPU) was added implicitly to our code and a data transfer

with copyout.

2.2 Loops parallelism

Most of the parallelism in OpenACC (hence performance) comes from the loops in your code and especially from loops
with independent iterations. Iterations are independent when the results do not depend on the order in which the

iterations are done. Some differences due to non-associativity of operations in limited
have to be aware of that problem and decide if it is critical.

precision are usually OK. You just

Another condition is that the runtime needs to know the number of iterations. So keep incrementing integers!

2.2.1 Directive

The directive to parallelize loops is:

#pragma acc loop

2.2.2 Non independent loops

Here are some cases where the iterations are not independent:

* Infinite loops

while (error > tolerance)

{

//compute error

}

¢ Current iteration reads values computed by previous iterations

array[0] 0;

array[1l] = 1;

for (int i = 2; i<size; ++1i)
i] =

array [array([i-1]+array[i-2];

 Current iteration reads values that will be changed by subsequent iterations

for (int i=0; i< size-1; ++1)
arrayl[i] = array[i+l] + 1

 Current iteration writes values that will be read by subsequent iterations

16 Chapter 2

. Get started with OpenACC

OpenACC for GPU: an introduction

for (int i = 0; i<size-1; ++1)
{

array [i]++;

array[i+1] = arrayl[i]+2;

These kind of loops can be offloaded to the GPU but might not give correct results if not run in sequential mode. You
can try to modify the algorithm to transform them into independent loop:

e Use temporary arrays
¢ Modify the order of the iterations

e etc

2.3 Managing data in compute regions

During the porting of your code the data on which you work in the compute regions might have to go back and forth
between the host and the GPU. This is important to minimize the number of data transfers because of the cost of these
operations.

For each compute region (i.e. acc parallel directive or kernel) a data region is created. OpenACC gives you several
clauses to manage efficiently the transfers.

#pragma acc parallel copy(varl[first_index:num_elements]) copyin(var2[first_index_
~i:num_elements_1i] [first_index_j:num_elements_7j], var3) copyout (var4, varh)

clausg effect when entering the region effect when leaving the region
cre- Allocate the memory needed on the GPU Free the memory on the GPU
ate

copyin| Allocate the memory and initialize the variable with | Free the memory on the GPU
the values it has on CPU

copy- | Allocate the memory needed on the GPU Copy the values from the GPU to the CPU then free
out the memory on the GPU
copy | Allocate the memory and initialize the variable with | Copy the values from the GPU to the CPU then free
the values it has on CPU the memory on the GPU
present Check if data is present: an error is raised if it is not | None
the case

create

copyout
9 [
il

To choose the right data clause you need to answer the following questions:

* Does the kernel need the values computed on the host beforehand? (Before)

 Are the values computed inside the kernel needed on the host afterhand? (After)

2.3. Managing data in compute regions 17

OpenACC for GPU: an introduction

Needed after Not needed after

Needed Before copy(varl, ...) copyin(var2, ...)
Not needed before | copyout(var3, ...) | create(var4, ...)

Usually it is not mandatory to specify the clauses. The compiler will analyze your code to guess what the best solution and
will tell you that one operation was done implicitely. As a good pratice, we recommend to make all implicit operations
explicit.

2.4 Exercise: Gaussian blurring filter

In this exercise, we create a picture on the GPU and then we apply a blur filter. For each pixel, the value is computed as
the weighted sum of the 24 neighbors and itself with the stencil shown below:

Note: In Fortran the weights are adjusted because we do not have unsigned integers.
Your job is to offload the blur function. Make sure that you use the correct data clauses for “pic” and “blurred” variables.

The original picture is 4000x4000 pixels. We need 1 value for each RGB channel it means that the actual size of the
matrix is 4000x12000 (3x4000).

%$%idrrun -a

// examples/C/blur_simple_exercise.c
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

(continues on next page)

18 Chapter 2. Get started with OpenACC

OpenACC for GPU: an introduction

(continued from previous page)
#include <time.h>
/ * %

* Apply a gaussian blurring filter to a picture generated on the fly
*

* List of functions:

& - void blur (unsigned char* pic, wunsigned char* blurred, size_t rows, size_t.
~cols)

2 the actual filter

w — void fill (unsigned char* pic, size_t rows, size_t cols)

B generate the original picture

* - void out_pic (unsigned char* pic, char* name, size_t rows, size_t cols)

* create a .rgb file

=/

void blur (unsigned char* pic, unsigned char* blurred, size_t rows, size_t cols)
{
/**
* Perform the blurring of the picture
* @ param pic(in): a pointer to the original picture
* @ param blurred(out): a pointer to the blurred picture
=/
size_t i, j, 1, i_c, Jj_c;
unsigned int pix;
unsigned char coefs[5][5] = { {1, 4, 6, 4, 1%,
{4, 16, 24, 16, 4},
{6, 24, 36, 24, 6},
{4, 16, 24, 16, 4},
{1, 4, 6, 4, 1}};

for (i=2; i<rows-2; ++i)
for (j=2; j<cols-2; ++j)
for (1=0; 1<3; ++1)
{
pix = 0;
for (i_c=0; i_c<5; ++i_c)
for (j_c=0; j_c<5; ++j_c)
pix += (pic[(i+i_c-2)*3*cols+(j+j_c—-2)*3+1]
*coefs[i_cl[j_cl);

blurred[i*3*cols+j*3+1] = (unsigned char) (pix/256);

void fill (unsigned char* pic, size_t rows, size_t cols)
{
/**
* Fill the picture with data
* @param pic(out): a pointer to the pixel to be blurred
* @param rows (in) the number of rows in the picture

* @param cols (in) the number of columns in the picture
*

Y
size_t i, 7J;
for (i=0; 1 < rows; ++i)

for (j=0; j < 3*cols; ++3)

(continues on next page)

2.4. Exercise: Gaussian blurring filter 19

OpenACC for GPU: an introduction

pic[i*3*cols+j] = (unsigned char) (

void out_pic (unsigned char* pic,

{

char* name,

/**

* Qutput of the picture into a sequence
* Use show_rgb (filepath, cols) to
* @param rows (in) the number of rows in
* @param cols (in) the number of columns

rows,

=/
FILE* f = fopen (name, "wb");
fwrite (pic, sizeof (unsigned char), rows*3
fclose (f);
3
int main (void)
{
size_t rows,cols;
rows = 4000;
cols = 4000;
printf ("Size of picture is x \n", ro

unsigned char* pic (unsigned char*) mal
unsigned char* blurred_pic (unsigned ch
—~char));

// Create the original picture
fill (pic, rows, cols);

// Apply the blurring filter

blur (pic, blurred_pic, rows, cols);

out_pic(pic, "pic.rgb", rows, cols);

out_pic(blurred_pic, "blurred.rgb", rows,
free(pic);
free (blurred_pic);
return 0;
}
from idrcomp import compare_rgb
compare_rgb ("pic.rgb", "blurred.rgb", 4000,

(continued from previous page)

i+ (§%3)*j+1%256) $256;

size_t rows, size_t cols)

of pixel
display

the picture

in the picture

*cols, f);

ws, cols);
loc (rows*3*cols*sizeof (unsigned char));
ar*) malloc(rows*3*cols*sizeof (unsigned.

cols);

4000)

20

Chapter 2. Get started with OpenACC

OpenACC for GPU: an introduction

2.4.1 Solution

%$%idrrun -a

// examples/C/blur_simple_solution.c
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

/**

* Apply a gaussian blurring filter to a picture generated on the fly

*

* List of functions:

* — void blur (unsigned char* pic, wunsigned char* blurred, size_t rows, size_t.
<cols)

b the actual filter

* — void fill (unsigned char* pic, size_t rows, size_t cols)

R generate the original picture

% - void out_pic(unsigned char* pic, char* name, size_t rows, size_t cols)

* create a .rgb file

=

void blur (unsigned char* pic, unsigned char* blurred, size_t rows,
{
/**
* Perform the blurring of the picture
* @ param pic(in): a pointer to the original picture
* @ param blurred(out): a pointer to the blurred picture
Y
size_t i, j, 1, i_c, Jj_c;
unsigned int pix;
unsigned char coefs[5][5] = { {1, 4, 6, 4, 1%,
{4, 16, 24, 16, 4},
{6, 24, 36, 24, 6},
{4, 16, 24, 16, 4%,
{1, 4, 6, 4, 1}

#pragma acc parallel loop copyin(coefs[:5][:5],pic[:3*rows*cols]).
scopyout (blurred|[:3*rows*cols])
for (i=2; i<rows-2; ++i)
for (j=2; j<cols-2; ++3j)
for (1=0; 1<3; ++1)
{
pix = 0;
for (i_c=0; i_c<5; ++i_c)
for (j_c=0; j_c<5; ++j_c)
pix += (pic[(i+i_c-2)*3*cols+(j+j_c—-2)*3+1]
*coefs[i_cl[j_cl);

blurred[i*3*cols+j*3+1] = (unsigned char) (pix/256);
}

void fill (unsigned char* pic, size_t rows, size_t cols)

{

/\k*
* Fill the picture with data
* @param pic(out): a pointer to the pixel to be blurred

* @param rows (in) the number of rows in the picture

size_t cols)

(continues on next page)

2.4. Exercise: Gaussian blurring filter

21

OpenACC for GPU: an introduction

* @param cols (in)
*

*/

the number of columns

size_t i, 3J;

(continued from previous page)

in the picture

#pragma acc parallel loop copyout (pic[0:3*rows*cols])

for (i=0; 1 < rows; ++1i)
for (j=0; j < 3*cols;

pic[i*3*cols+j] =

++7)
(unsigned char)

void out_pic (unsigned char* pic,

{

char* name,

/**

* Output of the picture into a sequence
* Use show_rgb (filepath, cols) to
* @param rows (in) the number of rows in
* @param cols (in) the number of columns

rows,

(i+(3%3)*j+1%256) $256;

size_t rows, size_t cols)

of pixel
display

the picture

in the picture

=/
FILE* f = fopen (name, "wb");
fwrite(pic, sizeof (unsigned char), rows*3*cols, f);
fclose (f);
}
int main (void)
{
size_t rows,cols;
rows = 4000;
cols = 4000;
printf ("Size of picture is X \n", rows, cols);

unsigned char* pic =
unsigned char* blurred_pic =
~char));

// Create the original picture

fill (pic, rows, cols);

// Apply the blurring filter

blur (pic, blurred_pic, rows, cols);

out_pic(pic, "pic.rgb", rows, cols);

(unsigned char*) malloc(rows*3*cols*sizeof (unsigned char));
(unsigned char*)

malloc (rows*3*cols*sizeof (unsigned.

out_pic(blurred_pic, "blurred.rgb", rows, cols);
free (pic);
free (blurred_pic);
return O;
}
from idrcomp import compare_rgb
compare_rgb ("pic.rgb", "blurred.rgb", 4000, 4000)

22

Chapter 2. Get started with OpenACC

OpenACC for GPU: an introduction

2.5 Reductions with OpenACC

Your code is performing a reduction when a loop is updating at each cycle the same variable:

For example, if you perform the sum of all elements in an array:

for (int i=0; i<size_array; ++1)
sum += arrayl[i];

If you run your code sequentially no problems occur. However we are here to use a massively parallel device to accelerate
the computation.

In this case we have to be careful since simultaneous read/write operations can be performed on the same variable. The
result is not sure anymore because we have a race condition.

For some operations, OpenACC offers an efficient mechanism if you use the reduction(operation:varl,var2,...) clause
which is available for the directives:

* #pragma acc loop reduction (op:varl)

* #pragma acc parallel reduction (op:varl)
* #fpragma acc kernels reduction (op:varl)
e #fpragma acc serial reduction (op:varl)

Important: Please note that for a lot of cases, the NVIDIA compiler (formerly PGI) is able to detect that a reduction is
needed and will add it implicitly. We advise you make explicit all implicit operations for code readability/maintenance.

2.5.1 Available operations

The set of operations is limited. We give here the most common:

Operator | Operation Syntax

+ sum reduction (+:varl, ...)

* product reduction (*:var2, ...)
max find maximum | reduction (max:var3, ...)
min find minimum | reduction (min:var4, ...)

Other operators are available, please refer to the OpenACC specification for a complete list.

Reduction on several variables

If you perform a reduction with the same operation on several variables then you can give a comma separated list after
the colon:

#pragma acc parallel loop reduction(+:varl, var2,...)

If you perform reductions with different operators then you have to specify a reduction clause for each operator:

#pragma acc parallel reduction (+:varl, var2) reduction(max:var3) reduction(*: var4)

2.5. Reductions with OpenACC 23

OpenACC for GPU: an introduction

2.5.2 Exercise

Let’s do some statistics on the exponential function. The goal is to compute
* the integral of the function between 0 and 7 using the trapezoidal method
¢ the maximum value
¢ the minimum value
You have to:
* Run the following example on the CPU. How much time does it take to run?
* Add the directives necessary to create one kernel for the loop that will run on the GPU
* Run the computation on the GPU. How much time does it take?

Your solution is considered correct if no implicit operation is reported by the compiler.

%$%idrrun -a
// examples/C/reduction_exponential_exercise.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
int main (void)
{
// current position and value
double x,v,X_p;
// Number of divisions of the function
int nsteps = 1le9;
// x min
double begin = 0.;
// %X max
double end = M_PI;
// Sum of elements
double sum = 0.;
// Length of the step
double step_l = (end-begin) /nsteps;

double dmin DBL_MAX;
double dmax = DBL_MIN;
for (int i=0 ; i < nsteps ; ++i)

{
x = i*step_1;
X_p = (i+l)*step_1;
y = (exp(x)+exp(x_p))/2;

sum += y;
if (y < dmin)
dmin = y;
if (y > dmax)
dmax = y;
}
// Print the stats

printf ("The MINimum value of the function is: \n",dmin) ;

printf ("The MAXimum value of the function is: \n", dmax) ;

printf ("The integral of the function on [, 1 is: \n",begin, end, sum*step_1) ;
printf (" difference is: ",exp (end) —exp (begin) —sum*step_1) ;

24 Chapter 2. Get started with OpenACC

OpenACC for GPU: an introduction

Solution

%$%idrrun -a
// examples/C/reduction_exponential_solution.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
int main (void)
{
// current position and value
double x,vy,x_p;
// Number of divisions of the function
int nsteps = 1le9;
// x min
double begin = 0.;
// x max
double end = M_PI;
// Sum of elements
double sum = 0.;
// Length of the step
double step_l = (end-begin) /nsteps;

double dmin = DBL_MAX;
double dmax = DBL_MIN;

#pragma acc parallel loop reduction (+:sum) reduction(min:dmin) reduction (max:dmax)
for (int i=0 ; i < nsteps ; ++i)
{

X = i*step_1;
X_p = (i+1)*step_1;
y = (exp(x)+exp(x_p))/2;
sum += y;
if (y < dmin)
dmin = y;
if (y > dmax)
dmax = y;
}
// Print the stats

printf ("The MINimum value of the function is: \n",dmin) ;

printf ("The MAXimum value of the function is: \n", dmax) ;

printf ("The integral of the function on [, 1 is: \n",begin, end, sum*step_1) ;
printf (" difference is: ",exp (end) —exp (begin) -sum*step_1) ;

2.5.3 Important Notes
* A special kernel is created for reduction. With NVIDIA compiler its name is the name of the “parent” kernel with
_red appended.

* You may want to use other directives to “emulate” the behavior of a reduction (it is possible by using atomic
operations). We strongly discourage you from doing this. The reduction clause is much more efficient.

Requirements:
* Get started

* Data Management

2.5. Reductions with OpenACC 25

OpenACC for GPU: an introduction

26 Chapter 2. Get started with OpenACC

CHAPTER
THREE

MANUAL BUILDING OF AN OPENACC CODE

During the training course, the building of examples will be done just by executing the code cells. Even though the
command line is always printed, we think it is important to practice the building process.

3.1 Build with NVIDIA compilers

The compilers are:
e nvc: C compiler
e nvc++: C++ compiler

* nvfortran: Fortran compiler

3.1.1 Compiler options for OpenACC

e —acc: the compiler will recognize the OpenACC directives
OpenACC is also able to generate code for multicore CPUs (close to OpenMP).
Some interesting options are:

— —acc=gpu: to build for GPU

—acc=multicore: to build for CPU (multithreaded)
— —acc=host: to build for CPU (sequential)

— —acc=noautopar: disable the automatic parallelization inside parallel regions (the default is
—acc=autopar)

All options can be found in the documentation.
¢ —gpu: GPU-specific options to be passed to the compiler
Some interesting options are:
— —gpu=ccXX: specify the compute capability for which the code has to be built
The list is available at https://developer.nvidia.com/cuda-gpus#compute.

— —gpu=managed: activate NVIDIA Unified Memory (with it you can ignore data transfers, but it might fail
sometime)

— —gpu=pinned: activate pinned memory. It can help to improve the performance of data transfers

— —lineinfo: generate debugging line information; less overhead than -g

27

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#acc-cmdln-opts
https://developer.nvidia.com/cuda-gpus#compute

OpenACC for GPU: an introduction

All options can be found in the documentation..
» -Minfo: the compiler prints information about the optimizations it uses
— —Minfo=accel: information about OpenACC (Mandatory in this training course!)

— —Minfo=all: all optimizations are printed (OpenACC, vectorization, FMA, ...). We recommend to use
this option.

3.1.2 Other useful compiler options

* -0 exec_name: name of the executable

e —Ox: level of optimization (0 <= x <=4)

¢ —0g: optimize debugging experience and enables optimizations that do not interfere with debugging.
e —fast: equivalent to ~-02 -Munroll=c:1 -Mnoframei -Mlre

* —g: add debugging symbols

e —gopt: instructs the compiler to include symbolic debugging information in the object file, and to generate opti-
mized code identical to that generated when -g is not specified.

You can specify a comma-separated list of options for each flag.

3.1.3 Examples

For instance to compile a C source code for GPU on NVIDIA V100 (Compute Capability 7.0), the following line should
be executed:

nvc -—acc=gpu,noautopar —-gpu=cc70,managed -Minfo=all mysource.c -0 myprog

The example below shows how to compile for the following setup:
* OpenACC for GPU -acc=gpu
¢ Compile for Volta architecture —gpu=cc70
* Activate optimizations —fast

* Print optimizations and OpenACC information ~-Minfo=all

GS = —acc=gpu —-gpu=cc70
= —fast
AGS = -Minfo=all

myacc_exec: myacc.f90
nvc —o myacc_exec $(ACCFLAGS) $(OPTFLAGS) $(INFOFLAGS) myacc.f90

28 Chapter 3. Manual building of an OpenACC code

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#gpu

OpenACC for GPU: an introduction

3.2 Build with GCC compilers

The compilers are:
¢ gcc: C compiler
e gxx: C++ compiler

* gfortran: Fortran compiler

3.2.1 Compiler options for OpenACC

¢ —fopenacc: the compiler will recognize the OpenACC directives

e —foffload: enables the compiler to generate a code for the accelerator. Compilers for host and accelerator are

separated

- —foffload=nvptx-none: compile for NVIDIA devices

It can be used to pass options such as optimization, libraries to link, etc (-foffload=-03 -foffload=-1m).

23

You can enclose options between

3.2.2 Other useful compiler options

e —0 exec_name: name of the executable
e —Ox: level of optimization (0 <= x <=3)

* —g: add debugging symbols

3.2.3 Example

The example shows how to compile for the following setup:
* OpenACC for GPU -fopenacc
e Compile for NVIDIA GPU -foffload=nvptx—-none

* Activate optimizations —~03 —-foffload=-03

and give itto ~foffload.

S = —fopenacc -foffload=nvptx—none
= -03 —-foffload=-03
S —fopt-info

myacc_exec: myacc.c

gcc —o myacc_exec $(ACCFLAGS) $(OPTFLAGS) $(INFOFLAGS) myacc.f90

3.2. Build with GCC compilers

29

OpenACC for GPU: an introduction

3.3 Exercise

» Execute the following cell which produces a file (just add the name you want after writefile).
¢ Open a terminal (File -> New -> Terminal)
* Load the compiler you wish to use (for example: module load nvidia-compilers/21.7)

» Use the information above to compile the file, you might need to modify the extension of the file “exercise” to
“exercise.c” or “exercise.f90”

« If you want to make sure that the code ran on GPU you can do export NVCOMPILER_ACC_TIME=1

¢ Execute the code with srun -n 1 ——-cpus-per—-task=10 -A for@v100
—-—gres=gpu:l —--time=00:03:00 --hint=nomultithread --gos=qos_gpu-dev time
<executable_name>

¢ Bonus: Compile the code without OpenACC support and compare the elapsed time in both cases.

$%writefile exercise

// examples/C/Manual_building_exercise.c
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void inplace_sum(double* A, double* B, size_t size)
{
#pragma acc parallel loop present (A[O:size], B[0O:size])
for (size_t i=0; i<size; ++1)
A[i] += BI[i];

int main (void)

{

size_t size = (size_t) 1e9;
double* A = (double*) malloc(size*sizeof (double));
double* B = (double*) malloc(size*sizeof (double));

double sum = 0.0;

#pragma acc data create(A[O:size], B[0:size])

{
#pragma acc parallel loop present (A[O:size], B[0O:size])
for (size_t i=0; i<size; ++1)
{
A[i] = sin(M_PI* (double)i/ (double)size)*sin(M_PI* (double)i/ (double)size);
B[i] = cos(M_PI* (double)i/ (double)size)*cos (M_PI* (double)i/ (double)size);
I3
inplace_sum (A, B, size);
#pragma acc parallel loop present (A[O:size], B[0O:size]) reduction (+:sum)
for (size_t i=0; i<size; ++1)
sum += A[i];
}
printf ("This should be close to 1.0: \n", sum/ (double) size);

return O;

30 Chapter 3. Manual building of an OpenACC code

CHAPTER
FOUR

DATA MANAGEMENT

4.1 Why do we have to care about data transfers?

The main bottleneck in using GPUs for computing is data transfers between the host and the GPU.

Let’s have a look at the bandwidths.

LLLLLltl
High

Capacity
Memory

it High Bandwidih
Viemorn

On this picture the size of the arrows represents the bandwidth. To have a better idea here are some numbers:
* GPU to its internal memory (HBM2): 900 GB/s
* GPU to CPU via PClIe: 16 GB/s
* GPU to GPU via NVLink: 25 GB/s
* CPU to RAM (DDR4): 128 GB/s

So if you have to remember only one thing: take care of memory transfers.

31

OpenACC for GPU: an introduction

4.2 The easy way: NVIDIA managed memory

NVIDIA offers a feature called Unified Memory which allows developers to “forget” about data transfers. The memory
space of the host and the GPU are shared so that the normal page fault mechanism can be used to manage transfers.

This feature is activated with the compiler options:
* NVIDIA compilers: ~gpu:managed
¢ PGIL: -ta=tesla:managed

This might give good performance results and you might just forget explicit data transfers. However, depending on
the complexity of your data structures, you might need to deal explicitly with data transfers. The next section gives an
introduction to manual data management.

Unified Memory also allows to increase virtual memory space on GPU (so called GPU memory oversubscription).

4.3 Manual data movement

4.3.1 Data clauses
There are multiple data directives that accept the same data clauses. So we start with the data clauses and than continue
with data directives.
In order to choose the right data clause for data transfers, you need to answer the following two questions:
* Does the kernel need the values computed beforehand by the CPU?

¢ Are the values computed inside the kernel needed on the CPU afterhand?

Needed after Not needed after
Needed before copy (varl, ...) copyin (var2, ...)
Not needed before | copyout (var3, ...) | create(var4, ...)

Figure below illustrates transfers, if any, between the CPU and the GPU for these four clauses.

cc parallel create(A, B)

data region M°m°’?’
deallocation

cc parallel copyin(A, B) acc parallel copyout(A, B)

32 Chapter 4. Data management

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://en.wikipedia.org/wiki/Page_fault

OpenACC for GPU: an introduction

Important: the presence of variables on the GPU is checked at runtime. If some variables are already found on the GPU,
these clauses have no effect. It means that you cannot update variables (on the GPU at the region entrance or on the CPU
at exit). You have to use the acc update directive in this case.

Other data clauses include:
e present: check if data is present in the GPU memory; an error is raised if it is not the case

e deviceptr: pass the GPU pointer; used for interoperability between other APIs (e.g. CUDA, Thrust) and
OpenACC

* attach: attach a pointer to memory already allocated in the GPU
Array shapes and partial data transfers

For array transfers, full or partial, one has to follow the language syntax.

In C, you have to specify the range of the array in the format [first index:number of elements].

#pragma acc data copyout (myarray[0O:size])
// In C, 0 is the first index by default and can be omitted
// the previous line is equivalent to
// #pragma acc data copyout (myarray[:size])
{
// Some really fast kernels
}

For partial data transfer, you can specify a subarray. For example:

#pragma acc data copyout (myarray[2:size-2])

Before moving on to data directives, some vocabulary needs to be introduced. According to data lifetime on the GPU,
two types of data regions can be distinguished: structured and unstructured. Structured data regions are defined within
the same scope (e.g. routine), while unstructured data regions allow data creation and deletion in different scopes.

4.3.2 Implicit structured data regions associated with compute constructs

Any of the three compute constructs — parallel, kernels, or serial — opens an implicit data region. Data
transfers will occur just before the kernel starts and just after the kernel ends.

In the Get started notebook, we have already seen that it is possible to specify data clauses in acc parallel to manage

our variables. The compiler checks what variables (scalar or arrays) are needed in the kernel and will try to add the data
clauses necessary.

Exercise

* Create a parallel region for each loop.

* For each parallel region, what data clause should be added?
%$%idrrun -a
// examples/C/Data_Management_vector_sum_exercise.c
#include <stdio.h>
#include <stdlib.h>
int main (void) {

(continues on next page)

4.3. Manual data movement 33

OpenACC for GPU: an introduction

(continued from previous page)

int size = 10000;
int a[size], blsize], c[size];

// Insert OpenACC directive
for (int i=0; i<size; ++1i){
ali] = i;
b[i] = 2*i;
}

// Insert OpenACC directive
for (int i=0; i<size; ++1i){
c[i] = alil+bl[i];

printf ("value at position 14: \n", c[14]);

Answer

* For each parallel region, what data clause should be added?

— Loop 1: The initialization of a and b is done directly on GPU so we don’t need to copy the values from CPU.
Variables a and b are used to compute c after execution of the first parallel region. We need to copyout a
and b.

— Loop 2: We need the values of a and b to compute c. This computation is the initialization of c. We print
the value of one element of c¢ after execution. The values of a and b are not needed anymore. We need to
copyin aandb. We need to copyout c.

%$%idrrun -a
// examples/C/Data_Management_vector_sum_solution.c
#include <stdio.h>
#include <stdlib.h>
int main (void) {
int size = 10000;
int a[size], blsize], c[size];

#pragma acc parallel loop copyout (a, b)
for (int i=0; i<size; ++1i){

ali]l = i;

b[i] = 2*1i;

#pragma acc parallel loop copyin(a, b) copyout (c)
for (int i=0; i<size; ++1i){
cli] = alil+b[i];

printf ("value at position 14: \n", c[14]);

If you use NVIDIA compilers (formerly PGI), most of the time the right directives will be added implicitly.

Our advice is to make explicit all actions performed implicitly by the compiler. It will help you to keep a code under-
standable and avoid porting problems if you have to change compiler.

34 Chapter 4. Data management

OpenACC for GPU: an introduction

All compilers might not choose the same default behavior.

4.3.3 Explicit structured data regions acc data
Using the data regions associated to kernels is quite convenient and is a good strategy for incremental porting of your
code.
However, this results in a large number of data transfers that can be avoided.
If we take a look at the previous example, we count 5 data transfers:
* Loop 1: copyout(a, b)
¢ Loop 2: copyin(a, b) copyout(c)

If we look closely we can see that we do not need a and b on the CPU between the kernels. It means that data transfers
of a and b at the end of kernell and at the beginning of kernel2 are useless.

The solution is to encapsulate the two loops in a structured data region that you can open we the directive acc data.
The syntax is:

#pragma acc data <data clauses>

{
// Your code

Exercise

Analyze the code to create a structured data region that encompasses both loops. The data clause present have been
added to the data region associated with kernels. You should not remove this part.

How many data transfers occurred?

$%idrrun -a
// examples/C/Data_Management_structured_data_region_exercise.c
#include <stdio.h>
#include <stdlib.h>
int main (void) {
int size = 10000;
int al[size], blsize], cl[sizel;

#pragma acc parallel loop present (a, b)
for (int i=0; i<size; ++1i){

ali] = i;

b[i] = 2*1i;

#pragma acc parallel loop present (a, b, c)
for (int i=0; i<size; ++1i){
cli] = alil+b[i];

}
printf ("value at position 14: \n", c[14]);

4.3. Manual data movement 35

OpenACC for GPU: an introduction

Solution

$%idrrun -a
// examples/C/Data_Management_structured_data_region_solution.c
#include <stdio.h>
#include <stdlib.h>
int main (void)
{
int size = 10000;
int a[size], blsize], cl[sizel;

// Structured data region
#pragma acc data create(a, b) copyout (c)

{
#pragma acc parallel loop present (a, b)
for (int 1i=0; i<size; ++1i){
alil] = i;
bli] = 2*i;
}
#pragma acc parallel loop present (a, b, c)
for (int 1i=0; i<size; ++1i){
cli] = alil+blil;
}
} // End of structured data region
printf ("value at position 14: 2d\n", c[14]);

When using structured data region we advise to use the present data clause which tells that the data should already be
in GPU memory.

WRONG example

The example given below doesn’t give the right results on the CPU. Why?

%$%idrrun -a
// examples/C/Data_Management_wrong_example.c
#include <stdio.h>
#include <stdlib.h>
int main (void) {
int size = 10000;
int a[size], blsize], c[size];

// Structured data region
#pragma acc data create(a, b) copyout (c)
{
#pragma acc parallel loop present (a, b)
for (int i=0; i<size; ++1i){

ali] = 1i;

b[i] = 2*i;
}
// We update an element of the array on the CPU
af[l4] = 78324;

#pragma acc parallel loop present (b, c) copyin(a)

(continues on next page)

36 Chapter 4. Data management

OpenACC for GPU: an introduction

(continued from previous page)
for (int i=0; i<size; ++1i){
cli] = alil+bIlil;
}
printf ("value at position 14: \n", c[14]);

This example is here to emphasize that you cannot update data with data clauses. It has an unintended behavior.

4.3.4 Updating data

Let’s say that all your code is not ported to the GPU. Then it means that you will have some variables (arrays or scalars)
for which both, the CPU and the GPU, will perform computation.

To keep the results correct, you will have to update those variables when needed.

acc update device

To update the value a variable has on the GPU with what the CPU has you have to use:

#pragma acc update device (varl, var2, ...)

Important: The directive cannot be used inside a compute construct.

acc update self

Once again if all your code is not ported on GPU the values computed on the GPU may be needed afterwards on the
CPU.

The directive to use is:

#pragma acc update self (varl, var2, ...)

Correct the previos example in order to obtain correct restuls:
%$%idrrun -a
// examples/C/Data_Management_wrong_example.c
#include <stdio.h>
#include <stdlib.h>
int main (void) {
int size = 10000;
int a[size], blsize], clsize];

// Structured data region
#pragma acc data create(a, b) copyout (c)
{
#pragma acc parallel loop present (a, b)
for (int i=0; i<size; ++1i){
ali] = i;
b[i] = 2*i;
}
// We update an element of the array on the CPU

(continues on next page)

4.3. Manual data movement 37

OpenACC for GPU: an introduction

(continued from previous page)

a[l4] = 78324;

#pragma acc parallel loop present (b, c) copyin(a)
for (int i=0; i<size; ++1i){
cli] = alil+bIlil;
}
}
printf ("value at position 14: \n", c[14]);

4.3.5 Explicit unstructured data regions acc enter data

Each time you run a code on the GPU, a data region is created for the lifetime of the program.
There are two directives to manage data inside this region:

e acc enter data <input data clause>: to put data inside the region (allocate memory, copy data
from the CPU to the GPU)

* acc exit data <output data clause>: toremove data (deallocate memory, copy data from the GPU
to the CPU)

This feature is helpful when you have your variables declared at one point of your code and used in another one (modular
programming). You can allocate memory as soon as the variable is created and just use present when you create kernels.

acc enter data
This directive is used to put data on the GPU inside the unstructured data region spanning the lifetime of the program. It
will allocate the memory necessary for the variables and, if asked, copy the data present on the CPU to the GPU.
It accepts the clauses:
e create: allocate memory on the GPU
* copyin: allocate memory on the GPU and initialize it with the values that the variable has on the CPU
* attach: attach a pointer to memory already in the GPU
The most common clauses are create and copyin. The attach clause is a bit more advanced and is not covered in this part.

Here is an example of syntax:

#pragma acc enter data copyin(varl[:size_varl], ...) create(var2[0:size_varZ2])

Important: the directive must appear after the allocation of the memory on the CPU.

double* var = (double*) malloc(size_var*sizeof (double)) ;
#pragma acc enter data create(var[0:size_var])

Otherwise you will have a runtime error.

38 Chapter 4. Data management

OpenACC for GPU: an introduction

acc exit data

By default, the memory allocated with acc enter data is freed at the end of the program. But usually you do not
have access to very large memory on the GPU (it depends on the card but usually you have access to a few tens of GB)
and it might be necessary to have a fine control on what is present.

The directive acc exit data <output data clause> is used to remove data from the GPU. It accepts the
clauses:

* copyout: copy to the CPU the values that the variable have on the GPU
¢ delete: free the memory on the GPU
* detach: remove the attachment of the pointer to the memory

Important: the directive must appear before memory deallocation on the CPU.

#pragma acc exit data delete(var[0:size_var])
free (var);

Otherwise you will have a runtime error.

Exercise

In this exercise you have to add data management directives in order to:
¢ allocate memory on the GPU for array
* perform the initialization on the GPU

* free the memory on the GPU.

%$%idrrun -a
// examples/C/Data_Management_unstructured_exercise.c
#include <stdio.h>
#include <stdlib.h>
double* init (size_t size){
double* array = (double*) malloc(size*sizeof (double));
return array;

int main(void){
size_t size = 100000;
double* array = init(size);
for (size_t i=0; i<size; ++1)
array[i] = (double)i;
printf ("This should be 42: \n", array[42]);
free (array);

4.3. Manual data movement 39

OpenACC for GPU: an introduction

Solution

$%idrrun -a
// examples/C/Data_Management_unstructured_solution.c
#include <stdio.h>
#include <stdlib.h>
double* init (size_t size){
double* array = (double*) malloc(size*sizeof (double));
#pragma acc enter data create(array[0:size])
return array;

int main (void) {
size_t size = 100000;
double* array = init (size);
#pragma acc parallel loop present (array[0:size])
for (size_t i=0; i<size; ++1)
array[i] = 1i;
#pragma acc exit data delete (array[0:size])
printf ("¢7\n", array[42]);
free (array);

4.3.6 Implicit data regions acc declare
An implicit data region is created for a program and each subprogram. You can manage data inside these data regions
using acc declare directive.

An implicit data region is created for each function you write. You can manage data inside it with the acc declare
directive.

int size = 1000000;
double* array;
#pragma acc declare create(array[0:size])

In Fortran this directive can also be used for variables declared inside modules.
In addition to regular data causes, it accepts device_resident cause for variables needed only on the GPU.

Example given below illustrates usage of this clause.

Example

In this example we normalize rows (C) or columns (Fortran) of a square matrix. The algorithm uses a temporary array
(norms) which is only used on the GPU.

$%idrrun -a

// examples/C/Data_Management_unstructured_declare_example.c
#include <stdio.h>

#include <stdlib.h>

void normalize_rows (double* mat, size_t size)
{

double norms|[size];

(continues on next page)

40 Chapter 4. Data management

OpenACC for GPU: an introduction

(continued from previous page)

#pragma acc declare device_resident (norms)

double norm;

// Compute the L1 norm of each row

#pragma acc parallel loop present (mat[0:size*size])
for (size_t i=0; i<size; ++1)

{
norm = 0.;
#pragma acc loop reduction (+:norm)
for (size_t j=0; j<size; ++3)
norm += mat[i*size+]j];
norms[i] = norm;
}

// Divide each row element by the L1 norm
#pragma acc parallel loop present (mat[0:size*size])
for (size_t i=0; i<size; ++1)
for (size_t j=0; j<size; ++3j)
mat[i*size+]j] /= norms[i];

int main (void)

size_t size = 2000;
double* mat = malloc(size*size*sizeof (double));
double sum = 0.;
srand ((unsigned) 12345900) ;
for (size_t i=0; i<size; ++1)

for (size_t j=0; j<size; ++3j)

mat [i*size+]j] = (double)rand() / (double) RAND_MAX;

#pragma acc enter data copyin (mat[0:size*size])

normalize_rows (mat, size);

// Compute the sum of all elements in the matrix
#pragma acc parallel loop present (mat[0:size*size]) reduction (+:sum)
for (size_t i=0; i<size; ++1)
for (size_t j=0; j<size; ++3j)
sum += mat[i*size+]];
#pragma acc exit data delete (mat[0:size*size])
free (mat);

printf ("&f == &d?\n", sum, size);

return O;

Requirements:
* Get started

* Data management

4.3. Manual data movement 41

OpenACC for GPU: an introduction

42 Chapter 4. Data management

CHAPTER
FIVE

HANDS-ON GAME OF LIFE

The Game of Life is a cellular automaton developed by John Conway in 1970. In this “Game” a grid is filled with an
initial state of cells having either the status “dead” or “alive”. From this initial state, several generations are computed
and we can follow the evolution of the cells for each generation.

The rules are simple:

¢ For “dead” cells:

00 e®

— If it has exactly 3 neighbors the cell becomes alive at the next generation D . .

¢ For “alive” cells:

— If it has more than 3 neighbors the cell becomes dead because of overpopulation

— If it has less than 2 neighbors the «cell becomes dead because of underpopulation

43

OpenACC for GPU: an introduction

For all other situations the state of the cell is kept unchanged.

5.1 What to do

In this hands-on you have to add the directives to perform the following actions:
* Copy the initial state of the world generated on the CPU to the GPU
e Make sure that the computation of the current generation and the saving of the previous one occur on the GPU
* Compute the number of cells alive for the current generation is done on the GPU

¢ The memory on the GPU is allocated and freed when the arrays are not needed anymore

%$%idrrun -a —--cliopts "20000 1000 300"
// examples/C/GameOfLife_exercise.c
#include <stdio.h>

#include <stdlib.h>

void output_world(int* restrict world, int rows, int cols, int generation)
{
/**
* Write a file with the world inside
* @param world: a pointer to the storage for the current step
* @param rows: the number of rows without the border
* @param cols: the number of columns without the border
=/
char* path = (char*) malloc(sizeof (char)*80);
sprintf (path, "generation%05d.gray", generation);
FILE* £ = fopen(path, "wb");
unsigned char* mat = (unsigned char*) malloc(sizeof (unsigned..
~char) * (rows+2) * (cols+2));

(continues on next page)

44 Chapter 5. Hands-on Game Of Life

OpenACC for GPU: an introduction

(continued from previous page)
for (int i=0; i<rows+2; ++1)
for (int j=0; j<cols+2; ++3j)
mat [i*cols+j] = (unsigned char) world[i*cols+j] * 255;
fwrite (world, sizeof (unsigned char), (rows+2)* (cols+2), f);
fclose (f);

void next (int* restrict world, int* restrict oworld, int rows, int cols)

{

Jxx
* Apply the rules and compute the next generation
* @param world: a pointer to the storage for the current step
* @param oworld: a pointer to the storage for the previous step
* @param rows: the number of rows without the border
* @param cols: the number of columns without the border
7
int neigh = 0;
int row_current = 0;
int row_above = 0;

int row_below
for (int r=1; r<=rows; ++r)
for (int c=1; c<=cols; ++c)

{

I
o
~

row_current = r* (cols+2);

row_above = (r-1)*(cols+2);

row_below = (r+1l)*(cols+2);

neigh = oworld[row_above + c-1] + oworld[row_above + c] + oworld[row_

wabove + c+1] +
oworld[row_current + c+1]+ oworld[row_
scurrent + c-1] +

oworld[row_below + c—1] + oworld[row_below + c] + oworld[row_
~below + c+1];

if (oworld[r* (cols+2)+c] == 1 && (neigh<2||neigh>3))

world[r* (cols+2)+c] = 0;
else if (neigh==3)
world[r* (cols+2)+c] = 1;

void save (int* restrict world, int* restrict oworld, int rows, int cols)

{

Save the current world to oworld

@param world: a pointer to the storage for the current step
@param oworld: a pointer to the storage for the previous step
@param rows: the number of rows without the border

@param cols: the number of columns without the border
/
for (int r=1; r<=rows; ++r)
for (int c=1; c <= cols; ++c)

oworld[r* (cols+2) + c] = world[r*(cols+2) + c];

* % ok X X ok %

int alive (int* restrict world, int rows, int cols)
{
/**

(continues on next page)

5.1. What to do 45

OpenACC for GPU: an introduction

Compute the number of cells alive at the current generation
@param world: a pointer to the storage for the current step

@param cols: the number of columns without the border
/
int cells = 0;
for (int r=1; r <= rows; ++r)
for (int c=1; c¢ <= cols; ++c)
cells += world[r* (cols+2) + c];
return cells;

*
*
* @param rows: the number of rows without the border
*
*

void fill_world(int* restrict world, int rows, int cols)
{

/**

* Set the initial state of the world

* @param world: a pointer to the storage for the current step

* @param rows: the number of rows without the border

* @param cols: the number of columns without the border

%Y
for (int r=1; r <= rows; ++r)

for (int c=1; ¢ <= cols; ++c)
world[r* (cols+2) + c] = rand()%4==0 21 : O;

// The border of the world is a dead zone
for (int i=0; i<=rows;++1i)

world[i* (cols+2)] = 0;
world[i* (cols+2)+cols+l] = 0;

for (int j=0; j<cols; ++j)

world[j] = 0;
world[(rows+1) * (cols+2)+j] = 0;

int* allocate(int rows, int cols)
{
/**

*

Allocate memory for a 2D array

@param rows: the number of rows without the border
@param cols: the number of columns without the border
@return a pointer to the matrix

/
int* mat = (int*) malloc((rows+2) * (cols+2) *sizeof (int));

return mat;

void destroy (int* mat, int rows, int cols)
{
/**
* Free memory for a 2D array
* @param mat: a pointer to the matrix to free
* @param rows: the number of rows without the border

(continued from previous page)

(continues on next page)

46 Chapter 5. Hands-on Game Of Life

OpenACC for GPU: an introduction

(continued from previous page)

* @param cols: the number of columns without the border
=y

free (mat) ;

int main(int argc, char** argv)

int rows, cols, generations;
int* world;
int* oworld;

if (argc < 4)

{
printf ("Wrong number of arguments: Please give rows cols and generations\n");
return 1;

}

rows = strtol(argv[1l], NULL, 10);

cols = strtol (argv([2], NULL, 10);

generations = strtol (argv[3], NULL, 10);

world = allocate (rows, cols);
oworld = allocate(rows, cols);
fill world(world, rows, cols);
printf ("Initial state set\n");
printf ("Cells alive at generation %d: %d\n", 0, alive (world, rows, cols));
for (int g=1; g <= generations; ++g)
{
save (world, oworld, rows, cols);
next (world, oworld, rows, cols);
output_world(world, rows, cols, g);
printf ("Cells alive at generation %4d: %d\n", g, alive (world, rows, cols));

destroy (world, rows, cols);
destroy (oworld, rows, cols);

return 0;

rows = 2000
cols = 1000

from idrcomp import convert_pic
import matplotlib.pyplot as plt
import glob

from PIL import Image

from ipywidgets import interact

files = sorted(glob.glob("*.gray"))
images = [convert_pic(f, cols, rows, "L") for f in files]
print (images[0] .size)
def view (i) :
crop = (155,65,360,270)
plt.figure(figsize=(12,12))
plt.imshow (images[i] .crop (crop), cmap="Greys")

(continues on next page)

5.1. What to do 47

OpenACC for GPU: an introduction

(continued from previous page)

plt.show ()
interact (view, i=(0, len(images)-1))

5.2 Solution

%$%idrrun -a —--cliopts "20000 1000 300"
// examples/C/GameOfLife_solution.c
#include <stdio.h>

#include <stdlib.h>

void output_world(int* restrict world, int rows, int cols, int generation)
{
/**
* Write a file with the world inside
* @param world: a pointer to the storage for the current step
* @param rows: the number of rows without the border
* @param cols: the number of columns without the border
=
char* path = (char*) malloc (sizeof (char)*80);
sprintf (path, "generation%05d.gray", generation);
FILE* £ = fopen(path, "wb");
unsigned char* mat = (unsigned char*) malloc(sizeof (unsigned.
<char) * (rows+2) * (cols+2));
#pragma acc parallel loop copyout (mat[(rows+2)* (cols+2)]).
spresent (world[(rows+2) * (cols+2)])
for (int i=0; i<rows+2; ++1i)
for (int 3=0; j<cols+2; ++7j)
mat [i*cols+]j] = (unsigned char) world[i*cols+j] * 255;
fwrite (world, sizeof (unsigned char), (rows+2)* (cols+2), f);
fclose (f);
I
void next (int* restrict world, int* restrict oworld, int rows, int cols)

{

/**
* Apply the rules and compute the next generation
* @param world: a pointer to the storage for the current step
* @param oworld: a pointer to the storage for the previous step
* @param rows: the number of rows without the border
* @param cols: the number of columns without the border
=Y
int neigh = 0;
int row_current = 0;

int row_above 0;
int row_below = 0;
#pragma acc parallel loop present (world[: (rows+2)* (cols+2)], .
woworld[: (rows+2) * (cols+2)1])
for (int r=1; r<=rows; ++r)
for (int c=1; c<=cols; ++c)

{

row_current = r* (cols+2);

row_above = (r-1)*(cols+2);

row_below = (r+1)*(cols+2);

neigh = oworld[row_above + c-1] + oworld[row_above + c] + oworld[row_

wabove + c+1] + .
(continues on next page)

48 Chapter 5. Hands-on Game Of Life

OpenACC for GPU: an introduction

(continued from previous page)

oworld[row_current + c+1]+ oworld[row_
scurrent + c-1] +
oworld[row_below + c-1] + oworld[row_below + c] + oworld[row_
Jbelow + c+1];
if (oworld[r* (cols+2)+c] == 1 && (neigh<2]||neigh>3))
world[r* (cols+2)+c] = 0;
else if (neigh==3)
world[r* (cols+2) +c]

1;

void save (int* restrict world, int* restrict oworld, int rows, int cols)

{

*
* Save the current world to oworld
* @param world: a pointer to the storage for the current step
* @param oworld: a pointer to the storage for the previous step
* @param rows: the number of rows without the border
* @param cols: the number of columns without the border
*/
#pragma acc parallel loop collapse(2) present (world[: (rows+2)* (cols+2)], .
woworld([: (rows+2) * (cols+2)])
for (int r=1; r<=rows; ++r)
for (int c=1; c <= cols; ++c)
oworld[r* (cols+2) + c] = world[r* (cols+2) + c];

int alive (int* restrict world, int rows, int cols)
{
Jxx
Compute the number of cells alive at the current generation
@param world: a pointer to the storage for the current step
@param rows: the number of rows without the border
* @param cols: the number of columns without the border
*/
int cells = 0;
#pragma acc parallel loop collapse(2) reduction(+:cells).
spresent (world[: (rows+2) * (cols+2)])
for (int r=1; r <= rows; ++r)
for (int c=1; ¢ <= cols; ++c)
cells += world[r* (cols+2) + c];
return cells;

* X ok X

void fill world(int* restrict world, int rows, int cols)
{
/**
* Set the initial state of the world
* @param world: a pointer to the storage for the current step
* @param rows: the number of rows without the border
* @param cols: the number of columns without the border
=y
for (int r=1; r <= rows; ++r)
for (int c=1; c <= cols; ++c)
world[r* (cols+2) + c] = rand()%4==0 21 : O;
// The border of the world is a dead zone

(continues on next page)

5.2. Solution 49

OpenACC for GPU: an introduction

(continued from previous page)

for (int i=0; i<=rows;++1i)

world[i* (cols+2)] = 0;
world[i* (cols+2)+cols+1l] = 0;

for (int j=0; j<cols; ++3j)

world[j] = 0;
world[(rows+1) * (cols+2)+j] = 0;

int* allocate(int rows, int cols)

{

/*k*

* Allocate memory for a 2D array

* @param rows: the number of rows without the border

* @param cols: the number of columns without the border
* @return a pointer to the matrix

*/

int* mat = (int*) malloc((rows+2) * (cols+2) *sizeof (int));

#pragma acc enter data create(mat[0: (rows+2) * (cols+2)])

return mat;

void destroy (int* mat, int rows, int cols)

{

/**

* Free memory for a 2D array

* @param mat: a pointer to the matrix to free

* @param rows: the number of rows without the border

* @param cols: the number of columns without the border

*/

#pragma acc exit data delete(mat[0: (rows+2) * (cols+2)])

free (mat) ;

int main(int argc, char** argv)

{

int rows, cols, generations;
int* world;
int* oworld;

if (argc < 4)

{
printf ("Wrong number of arguments: Please give rows cols and generations\n");
return 1;

}

rows = strtol(argv[1l], NULL, 10);

cols = strtol(argv[2], NULL, 10);

generations = strtol (argv[3], NULL, 10);

world = allocate(rows, cols);
oworld = allocate(rows, cols);

(continues on next page)

50

Chapter 5. Hands-on Game Of Life

OpenACC for GPU: an introduction

fill _world(world, rows,

cols);

printf ("Initial state set\n");

#pragma acc update device (world[O:
printf ("Cells alive at generation %d:

for (int g=1; g <= generations; ++g)

{
save (world, oworld,
next (world, oworld,
output_world (world,
printf ("Cells alive

rows, cols);

rows, cols);

rows, cols, g);

at generation %4d:

destroy (world, rows, cols);
destroy (oworld, rows, cols);

return 0;

rows = 2000
cols 1000

from idrcomp import convert_pic
import matplotlib.pyplot as plt

import glob
from PIL import Image

from ipywidgets import interact

files = sorted(glob.glob ("*

.gray"))

(rows+2) * (cols+2) 1)
%d\n", 0, alive(world, rows, cols));

%d\n",

(continued from previous page)

g, alive(world, rows, cols));

images = [convert_pic(f, cols, rows, "L") for f in files]

print (images[0] .size)
def view (i) :
crop = (155,65,360,270)

plt.figure(figsize=(12,12))

plt.imshow (images[i].crop (crop),

plt.show ()

interact (view, i=(0, len(images)-1))

Clean the pictures:

cmap="Greys")

'rm *.gray

5.2. Solution

51

OpenACC for GPU: an introduction

52 Chapter 5. Hands-on Game Of Life

Part 11

Day 2

53

CHAPTER
SIX

COMPUTE CONSTRUCTS

6.1 Giving more freedom to the compiler: acc kernels

We focus the training course on the usage of the acc parallel compute construct since it gives almost full control

to the developer.

The OpenACC standard offers the possibility to give more freedom to the compiler with the acc kernels compute
construct. The behavior is different as several kernels might be created from one acc kernels region. One kernel is

generated for each nest of loops.

6.1.1 Syntax

The following example would generate 2 kernels (if reductions are present more kernels are generated to deal with it):

#pragma acc kernels
{
// 1st kernel generated
#pragma acc loop
for (int i=0; i<size_i; ++1)
{
for (int j=0; j<size_7j; ++3j)
{
// Perform some computation
}
}

// 2nd kernel generated
#pragma acc loop
for (int i=0; i<size_i; ++1)
{

// Some more computation

}

It is almost equivalent to this example:

#pragma acc data <data clauses>
{
// 1st kernel generated
#pragma acc parallel loop
for (int i=0; i<size_i; ++1)

{

(continues on next page)

55

OpenACC for GPU: an introduction

(continued from previous page)

for (int j=0; j<size_7j; ++3)
{
// Perform some computation
}
}

// 2nd kernel generated
#pragma acc parallel loop
for (int i=0; i<size_i; ++1)
{

// Some more computation

}

The main difference is the status of the scalar variables used in the compute construct. With acc kernels they are
shared whereas with acc parallel they are private at the gang level.

The configuration of the kernels (number of gangs, workers and vector length) can be different.

6.1.2 Independent loops
The compiler is a very prudent software. If it detects that parallelizing your loops can cause the results to be wrong it will
run them sequentially. Have a look at the compilation report to see if the compiler struggles with some loops.

However it might be a bit too prudent. If you know that parallelizing your loops is safe then you can tell the compiler
with the independent clause of acc loop directive.

#pragma acc kernels
{
#pragma acc loop independent
for (int i=0; i<size; ++1)
{
// A very safe loop
}

6.2 Running sequentially on the GPU? The acc serial compute
construct

The GPUs are not very efficient to run sequential code however there 2 cases where it can be useful:
* Debugging a code
* Avoid some data transfers

The OpenACC standard gives you the acc serial directive for this purpose.

It is equivalent to having a parallel kernel which uses only one thread.

56 Chapter 6. Compute constructs

OpenACC for GPU: an introduction

6.2.1 Syntax

#pragma acc serial <clauses>

{

// My sequential kernel

}

which is equivalent to:

#pragma acc parallel num _gangs(l) num_workers(l) vector_length (1)

{
// My sequential kernel

}

6.3 Data region associated with compute constructs

You can manage your data transfers with data clauses:

clauseeffect when entering the region effect when leaving the region
cre- | If the variable is not already present on the GPU: | If the variable is not in another active data region:
ate | allocate the memory needed on the GPU free the memory on the GPU

copyin If the variable is not already present on the GPU: | If the variable is not in another active data region:
allocate the memory and initialize the variable with | free the memory on the GPU

the values it has on CPU
copy4 If the variable is not already present on the GPU: | If the variable is not in another active data region:
out | allocate the memory needed on the GPU copy the values from the GPU to the CPU then free
the memory on the GPU

copy| If the variable is not already present on the GPU: | If the variable is not in another active data region:
allocate the memory and initialize the variable with | copy the values from the GPU to the CPU then free
the values it has on CPU the memory on the GPU

presentNone None

IMPORTANT: If your acc kernels is included in another data region then you have to be careful because you can
not use the data clauses to update data. You need to use acc update for data already in another data region.

Requirements:

¢ Get started

6.3. Data region associated with compute constructs 57

OpenACC for GPU: an introduction

58 Chapter 6. Compute constructs

CHAPTER
SEVEN

VARIABLES STATUS (PRIVATE OR SHARED)

7.1 Default status of scalar and arrays

The default status of variables depend on what they are (scalar or array) and the compute construct you use. Here is a
summary:

Scalar Array

parallel | gang firstprivate | shared
kernels | shared shared

7.2 Private variables

It is possible to make a variable private at gang, worker or vector level of parallelism if you use the acc loop clauses
private or firstprivate. The variables will be private at the maximum level of parallelism the loop works.

Here are some examples:

7.2.1 Simple cases

A single loop with variables private at gang level:

double scalar = 42.;
double* array = (double) malloc (size*sizeof (double)) ;
#pragma acc parallel
{
// scalar would have been private in any case because we use 'acc parallel'.
scompute construct
#pragma acc loop gang private (scalar, array)
for (int i=0; i<size; ++1)
{
// do some work on scalar and array

}

A single loop with variables private at worker level:

59

OpenACC for GPU: an introduction

double scalar = 42.;
double* array = (double) malloc (size*sizeof (double)) ;
#pragma acc parallel
{
#pragma acc loop gang worker private (scalar, array)
for (int i=0; i<size; ++1i)
{

// do some work on scalar and array

A single loop with variables private at vector level:

double scalar = 42.;
double* array = (double) malloc(size*sizeof (double));
#pragma acc parallel
{
// the number of workers here is 1
#pragma acc loop gang vector private (scalar, array)
for (int i=0; i<size; ++1)
{

// do some work on scalar and array

7.2.2 A bit less straightforward

Nested loops:

double scalarl = 0.;
double scalar2;
#pragma acc parallel
{
#pragma acc loop gang reduction (+:scalarl) private (scalar?2)
for (int i=0; i<size_1i; ++1)
{
scalar2 = 0.;
// scalar2 is private at gang level but shared at worker/vector level
#pragma acc loop vector reduction (+:scalarZ2)
for (int j=0; i<size_7j; ++7)
{
scalar2 += ... ;
}

scalarl += scalar2;

60 Chapter 7. Variables status (private or shared)

OpenACC for GPU: an introduction

7.3 Caution

You can make arrays private but in this case the memory requirements might be huge if you want them to be private at
worker or vector level.

Requirements:
¢ Get started
¢ Variables_status

* Data management

7.3. Caution 61

OpenACC for GPU: an introduction

62 Chapter 7. Variables status (private or shared)

CHAPTER
EIGHT

ADVANCED LOOP CONFIGURATION

Different levels of parallelism are generated by the gang, worker and vector clauses. The loop directive is responsible for
sharing the parallelism across the different levels.

The degree of parallelism in a given level is determined by the numbers of gangs, workers and threads. These numbers are
defined by the implementation. This default behavior depends on not only the target architecture but also on the portion
of code on which the parallelism is applied. No modifications of this default behavior is recommended as it presents good
optimization.

It is however possible to specify the numbers of gangs, workers and threads in the parallel construct with the num_gangs,
num_workers and vector_length clauses. These clauses are allowed with the parallel and kernel construct. You might want
to use these clauses in order to:

* debug (to restrict the execution on a single gang (without restrictions on the vectors as the serial clause will do), to
vary the parallelism degree in order to expose a race condition ...)

¢ limit the number of gang to lower the memory occupancy when you have to privatize arrays

8.1 Syntax

Clauses to specify the numbers of gangs, workers and vectors are num_gangs, num_workers and vector_length.

#pragma acc parallel num_gangs (3500) vector_length (256)
{
#pragma acc loop gang
for(int 1 = 0 ; 1 < size_1i ; ++1)
{
#pragma acc loop vector
for(int 7 = 0 ; J < size_3j ; ++3)
{
// A Fabulous calculation

#pragma acc parallel loop gang num_gangs (size_1i/2) vector_length (256)
for(int i = 0 ; i < size_1i ; ++1i)
{
#pragma acc loop vector
for(int j = 0 ; j < size_j ; ++3)
{
// A Fabulous calculation

(continues on next page)

63

OpenACC for GPU: an introduction

(continued from previous page)

8.2 Restrictions

The restrictions described here are for NVIDIA architectures.
* The number of gang is limited to 23'-1 (65535 if the compute capability is lower than 3.0).

* The product num_workers x vector_length can not be higher than 1024 (512 if the compute capability is lower
than 2.0).

 To achieve performances, it is better to set the vector_length as a multiple of 32 (up to 1024).
» Using routines with a vector level of parallelization or higher sets the vector_length to 32 (compiler limitation).

This restrictions can vary with the architecture and it is advised to refer to the “Cuda C programming Guide” (Section G
“Features and Technical Specifications”) for future implementations.

8.3 Example

%$%idrrun -a
// examples/C/Loop_configuration_example.c
#include <stdio.h>
#include <stdlib.h>
#include <openacc.h>
int main (void)
{
int n = 200;
int ngangs = 1, nworkers = 2, nvectors = 32;
size_t table[n*n*n];

#pragma acc parallel loop gang num_gangs (ngangs) num_workers (nworkers) vector_
slength (nvectors) copyout (table[0:n*n*n]j)
for (int 1=0; i<n; ++1)
{
#pragma acc loop worker
for (int j=0; Jj<n; ++3j)
{
#pragma acc loop vector
for (int k=0; k<n; ++k) table[i*n*n + j*n + k] = k + 1000*j + 1000*1000*1i;

printf (" \n",table[0],table[n*n*n-1]);

64 Chapter 8. Advanced loop configuration

OpenACC for GPU: an introduction

8.4 Exercise

A simple exercise can be to modify the value of the num_gang clause (and add a variation to the vector length) and then
compare the execution time.

For a change, we will make an exercise that don’t make sense physically. It can however come handy, especially if you
try the practical work on HYDRO. In this exercise, you will have to:

e parallelize a few lines of codes
* be sure that it reproduces well the CPU behavior
* manually modify the number of gangs

 observe that the number of gangs will be limited by the system’s size in this code

%$%idrrun —--cliopts "500"

// examples/C/Loop_configuration_exercise.c
#include <stdio.h>

#include <stdlib.h>

#include <openacc.h>

int main(int argc, char** argv)
{

size_t size=50000;

double tablel[size];

double sum_val;

double res;

unsigned int ngangs = (unsigned int) atoi(argv([l]);

res = 0.0;
double norm = 1./ ((double)size* (double)size);
for (size_t i=0; i<size; ++1)
{
for (size_t j=0; j<size; ++3j)
{
table[j] = (i+]j) *norm;
)3
sum_val = 0.0;
for(size_t j=0; j<size; ++3j)
{
sum_val += tablel[]j];
}
res += sum_val;
}
printf ("result: \n", res);
return O;

8.4. Exercise 65

OpenACC for GPU: an introduction

8.4.1 Solution

%$%idrrun -a —--cliopts "500"

// examples/C/Loop_configuration_solution.c
#include <stdio.h>

#include <stdlib.h>

#include <openacc.h>

int main(int argc, char** argv)
{

size_t size=50000;

double arrayl[size];

double tablel[size];

double sum_val;

double res;

unsigned int ngangs = (unsigned int) atoi(argv([l]);

res = 0.0;

double norm = 1./ ((double)size* (double)size);
#pragma acc parallel num_gangs (ngangs) copyout (array[0:size]) private (table[0:size])
{

#pragma acc loop gang reduction (+:res)

for (size_t i=0; i<size; ++1)

{
#pragma acc loop vector
for(size_t j=0; j<size; ++3j)
{
table[j] = (i+7) *norm;
I3
sum_val = 0.0;
#pragma acc loop vector reduction (+:sum_val)
for(size_t j=0; j<size; ++3j)
{
sum_val += tablel[jl;
I3
array([i] = sum_val;
res += sum_val;
}
3
printf ("result: %1f\n",res);

return O;

Requirements:
* Get started
* Data management

* Loop configuration

66 Chapter 8. Advanced loop configuration

CHAPTER
NINE

USING OPENACC IN MODULAR PROGRAMMING

Most modern codes use modular programming to make the readability and maintenance easier. You will have to deal
with it inside your own code and be careful to make all functions accessible where you need.

If you call a function inside a kernel, then you need to tell the compiler to create a version for the GPU. With OpenACC
you have to use the acc routine directive for this purpose.

With Fortran you will have to take care of the variables that are declared inside modules and use acc declare
create.

9.1 acc routine <max_level_ of parallelism>

This directive is used to tell the compiler to create a function for the GPU as well as for the CPU. Since the function is
available for the GPU you will be able to call it inside a kernel.

When you use this directive you sign a contract with the compiler (normally no soul selling, but check it twice!) and
promise that the function will be called inside a section of code for which work sharing at this level is not yet activated.
The clauses available are:

¢ gang

» worker

¢ vector

* seq: the function is executed sequentially by one GPU thread

The directive is added before the function definition or declaration:

#pragma acc routine seq
double mean_value (double* array, size_t array_size)
{

// compute the mean value

}

67

OpenACC for GPU: an introduction

9.1.1 Wrong examples

Since it might be a bit tricky here are some wrong examples with an explanation: This example is wrong because acc
parallel loop worker activates work sharing at the worker level of parallelism. The acc routine worker
indicates that the function can activate worker and vector level of parallelism and you cannot activate twice the same level.

#pragma acc routine worker
void my_worker_func(){...}

#pragma acc parallel loop worker
for (int i=0; i<size; ++1)
my_worker_func () ;

For a similar reason this is forbidden:

#pragma acc routine gang
void my_gang_func(){...}

#pragma acc parallel
{
#pragma acc loop gang
for (int i=0; i<size; ++1)
my_gang_func () ;

This example is wrong since it breaks the promise you make with the compiler: A vector routine cannot have loops at the
gang and worker levels of parallelism.

#pragma acc routine vector
void my_wrong_routine ()
{
#pragma acc loop gang worker
for (int i=0; i<size; ++1)
// some loop stuff

9.2 Named acc routine (name) <max_level of parallelism>

You can declare the acc routine directive anywhere a function prototype is allowed. It has to be done before the
definition of the function or its usage in that scope.

#pragma acc routine (beautiful_name) seq

char* beautiful_name (char* name)

{
// Do something

or:

68 Chapter 9. Using OpenACC in modular programming

OpenACC for GPU: an introduction

#pragma acc routine (beautiful_name) seq

#pragma acc routine

int another_brick (char* name)

{
char* beauty = beautiful_name (name) ;
// Integers are beauty

return int_beauty;

9.3 Directives inside an acc routine

Routines you declare with acc routine shall not contain directives to create kernels (parallel, serial, kernels). You
have to consider the content of the function already inside a kernel.

#pragma acc routine vector
void init (int* array, size_t size){
#pragma acc loop
for (int i=0; i<size; ++1)
array[i] = 1i;

9.4 Exercise

In this exercise, you have to compute the mean value of each row of a matrix. The value is computed by a function
mean_value working on one row at a time. This function can use parallelism.

To have correct results, you will need to make the variable 1ocal_mean private for each thread. To achieve this you
have to use the private(vars, ...) clause of the acc loop directive.

%$%idrrun -a

// examples/C/Modular_programming_mean_value_exercise.c
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

double mean_value (double* array, size_t array_size){
double sum = 0.0;
for (size_t 1=0; i<array_size; ++1i)
sum += array[i];
return sum/array_size;

void rand_init (double* array, size_t array_size)
{
srand ((unsigned) 12345900) ;
for (size_t 1=0; i<array_size; ++1i)
array[i] = 2.*((double)rand()/RAND_MAX -0.5);

(continues on next page)

9.3. Directives inside an acc routine 69

OpenACC for GPU: an introduction

void iterate (double* array, size_t array_size, size_t cell_size)

{

double local_mean;

for (size_t 1 = cell_size/2; i< array_size-cell_size/2;

{

local_mean = mean_value (&array[i-cell_size/2], cell_size);

array[i] += signbit (local_mean) * 0.1;

int main (void) {

(continued from previous page)

size_t num_cols = 500000;

size_t num_rows = 3000;

double* table = (double*) malloc (num_rows*num_cols*sizeof (double));
double* mean_values = (double*) malloc (num_rows*sizeof (double));

// We initialize the first row with random values between -1 and 1

rand_init (table, num_cols);

for (size_t i=1; i<num_rows; ++1i)
iterate (&table[i*num_cols], num_cols, 32);

for (size_t i=0; i<num_rows; ++1i)

{

mean_values[i] = mean_value (& (table[i*num_cols]),

for (size_t i=0; 1i<10; ++i)

printf ("Mean value of row = \n", i, table[il]);

printf("...\n");
for (size_t i=num_rows-10; i<num_rows; ++i)

printf ("Mean value of row = \n", i, table[il]);

return 0;

9.4.1 Solution

%$%idrrun -a
// examples/C/Modular_programming_mean_value_solution.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#pragma acc routine vector
double mean_value (double* array, size_t array_size) {
double sum = 0.0;
#pragma acc loop vector reduction (+:sum)
for (size_t 1=0; i<array_size; ++1i)
sum += array[i];
return sum/array_size;

void rand_init (double* array, size_t array_size)

{
srand ((unsigned) 12345900);

num_cols);

(continues on next page)

70 Chapter 9. Using OpenACC in modular programming

OpenACC for GPU: an introduction

(continued from previous page)

for (size_t 1=0; i<array_size; ++1i)
array[i] = 2.*((double)rand()/RAND_MAX -0.5);

void iterate (double* array, size_t array_size, size_t cell_size)
{
double local_mean;
#pragma acc parallel loop private (local_mean) present (array/[:array_size])
for (size_t 1 = cell_size/2; i< array_size-cell_size/2; ++1i)
{
local_mean = mean_value (&¢array[i-cell_size/2], cell_size);
array[i] += signbit (local_mean) * 0.1;

int main (void) {

size_t num_cols = 500000;

size_t num_rows = 3000;

double* table = (double*) malloc (num_rows*num_cols*sizeof (double));
double* mean_values = (double*) malloc (num_rows*sizeof (double));

// We initialize the first row with random values between -1 and 1
rand_init (table, num_cols);
#pragma acc enter data copyin(table[0:num_rows*num_cols])

for (size_t i=1; i<num_rows; ++1i)
iterate (&table[i*num_cols], num_cols, 32);

#pragma acc parallel loop gang present (table[0:num_rows*num_cols]) copyout (mean_
wvalues[0:num_rows])

for (size_t 1i=0; i<num_rows; ++1)

{

mean_values[i] = mean_value (& (table[i*num_cols]), num_cols);

for (size_t i=0; 1i<10; ++i)
printf ("Mean value of row
printf("...\n");
for (size_t i=num_rows-10; i<num_rows; ++1i)
printf ("Mean value of row $ 10.5f\n", i, table[il]);
return O;

10.5f\n", i, tablel[i]);

9.4. Exercise 71

OpenACC for GPU: an introduction

72 Chapter 9. Using OpenACC in modular programming

CHAPTER
TEN

PROFILING YOUR CODE TO FIND WHAT TO OFFLOAD

10.1 Development cycle

When you port your code with OpenACC you have to find the hotspots which can benefit from offloading.

That’s the first part of the development cycle (Analyze). This part should be done with a profiler since it helps a lot to find
the hotspots.

Once you have found the most time consuming part, you can add the OpenACC directives. Then you find the next hotspot,
manage memory transfers and so on.

Parallelize
loops

Optimize
loops.

Optimize
data

10.2 Quick description of the code

The code used as an example in this chapter generates a picture and then applies a blurring filter.

Each pixel of the blurred picture has a color that is the weighted average of its corresponding pixel on the original picture
and its 24 neighbors.

It will generate 2 pictures that look like:

73

OpenACC for GPU: an introduction

10.3 Profiling CPU code

The first task you have to achieve when porting your code with OpenACC is to find the most demanding loops in your
CPU code. You can use your favorite profiling tool:

* gprof
« ARM MAP
* Nsight Systems
Here we will use the Nsight Systems.

The first step is to generate the executable file. Run the following cell which will just compile the code inside the blur.c
and create 2 files:

e blur.c (the content of the cell)
e blur.c.exe (the executable)

This lets us introduce the command to run an already existing file $idrrunfile filename.

$idrrunfile —-profile ../../examples/C/blur.c

Now you can run the UI by executing the following cell and choosing the right reportxx.qdrep file (here it should be
reportl.qdrep).

Please also write down the time taken (should be around 0.3 s on 1 Cascade Lake core).

%%bash
module load nvidia-nsight-systems/2021.2.1
nsys—-ui $PWD/reportl.qgdrep

10.4 The graphical profiler

The Graphical user interface for the Nsight Systems (version 2021.2.1) is the following:

74 Chapter 10. Profiling your code to find what to offioad

https://sourceware.org/binutils/docs/gprof/
https://www.arm.com/products/development-tools/server-and-hpc/forge/map
https://developer.nvidia.com/nsight-systems

OpenACC for GPU: an introduction

NVIDIA Msight Systems 2021.2.1

File View Tools Help
Project Explorer llll report1.qdrep
& Project 1 ;
report1.qdrep = Timeline View - Q 1x J /1 5warnings, 10 messages
E repor‘tz.qdrep 0sms +100ms +200ms +300ms +400ms +500ms -
B reportigdrep
B report7.qdrep b CPULRD) _ A -
B reporti.gdrep « Threads (3)
«] [31843] blurcexe - Il AR .
05 runtime libraries El
Profiler overhead U
- A - -
Events View *
Name b 4
Description:
Right-click a timeline row and select "Show in Events View" to see events here
(]
10.4.1 The timeline
Maybe the most important part is the timeline:
reportl.qdrep
= Tir.aline View - S /% 5warnings, 10 messages
s ms +100ms +200ms +300ms +400ms +500ms =

¥ CPU(80)

= Threads (3)

= [v| [31843] blur.c.exe - B iiiim
05 runtime libraries |E|
Profiler overhead D
- R ‘ X

It has the information about what happened during execution of your code with a timeline view.

You can select a portion of the timeline by holding the left button of the mouse (when the mouse is set up for right-handed
people) and dragging the cursor.

10.4. The graphical profiler 75

OpenACC for GPU: an introduction

= Timeline View - Q1 5warnings, 10 messages

0s Ms +100ms +200ms +300ms +400ms +500ms =

» CPU(80)

= Threads (3)
* v [31843] blur.c.exe - i

05s runtime libraries f..

Profiler overhead |_|

and zoom (maj+z or right-click “Zoom into selection”):

= Timeline View - G 1x 5 warnings, 10 messages

os +220ms +230ms +240ms +250ms +260ms +270ms

» CPU (80)

= Threads (3)

= [31843] blur.c.exe -

05 runtime libraries

Profiler overhead |05 runtime libr...|

10.4.2 Profile

To see a summary of the time taken by each function you have to select “Bottom-up View” in the part below the timeline.
You can unroll the functions to have a complete view.

Bottom-Up View = | Process [3184

1 Filter... | 2343 samples are us

Symbol Name Self, 4 = Mot
= weight 80,70 /gp!
= blur 80,70 /gpl
~ main 84,98 /gpl

¢ _libc_sta... 84,98 /usr
[Max depth] 5,72 [Ma

v ill 2,94 /gpl
¢ blur 2,60 /fgpl
b checksum 2,35 /gpl

76 Chapter 10. Profiling your code to find what to offioad

OpenACC for GPU: an introduction

Analysis

So here we see that most of the time is spent into the weight function. You can open the blur.c file to see what this function
does.

The work is done by this double loop which computes the value of the blurred pixel

for (i=0; 1i<5; ++1)
for (3=0; 3<5; ++3)
pix += pic[(x+1i-2)*3*cols+y*3+1-2+j]*coefs[i][]];

Parallelizing this loop will not give us the optimal performance. Why?

The iteration space is 25. So we will launch a lot of kernels (number of pixels in the picture) with a very small number of
threads for a GPU.

As a reminder NVIDIA V100 can run up to 5,120 threads at the same time.
You also have to remember that launching a kernel has an overhead.
So the advice is:
¢ Give work to the GPU by having large kernels with a lot of computation
¢ Avoid launching too many Kkernels to reduce overhead

We have to find another way to parallelize this code! The weight function is called by b1lur which is a loop over the
pixels.

As an exercise, you can add the directives to offload b1ur. Once you are done you can run the profiler again.

$idrrunfile -a ../../examples/C/blur.c

10.5 Profiling GPU code: other tools

Other tools available for profiling GPU codes include:
* ARM MAP
¢ Environment variables NVCOMPILER_ACC_TIME and NVCOMPILER_ACC_NOTIFY

It is possible to activate profiling by the runtime using two environment variables, NVCOMPILER_ACC_TIME and
NVCOMPILER_ACC_NOTIFY. It provides a fast and easy way of profiling without a need of a GUL

Warning: disable NVCOMPILER_ACC_TIME (export NVCOMPILER_ACC_TIME 0) if using another profiler.

10.5.1 NVCOMPILER_ACC_NOTIFY

Additional profiling information can be collected by using the variable NVCOMPILER_ACC_NOTIFY. The values
below correspond to activation of profiling data collection depending on a type of GPU operation.

¢ 1: kernel launches

e 2: data transfers

* 4: region entry/exit

* 8: wait operations or synchronizations

* 16: device memory allocates and deallocates

10.5. Profiling GPU code: other tools 77

https://www.arm.com/products/development-tools/server-and-hpc/forge/map

OpenACC for GPU: an introduction

For example, in order to obtain output including the kernel executions and data transfers, one needs to set NVCOM-
PILER_ACC_NOTIFY to 3.

Requirements:
* Get started

e Data Management

78 Chapter 10. Profiling your code to find what to offload

CHAPTER
ELEVEN

MULTI GPU PROGRAMMING WITH OPENACC

11.1 Disclaimer

This part requires that you have a basic knowledge of OpenMP and/or MPIL

11.2 Introduction

If you wish to have your code run on multiple GPUs, several strategies are available. The most simple ones are to create
either several threads or MPI tasks, each one addressing one GPU.

11.3 API description

For this part, the following API functions are needed:
* acc_get_device_type(): retrieve the type of accelerator available on the host
* acc_get_num_device(device_type): retrieve the number of accelerators of the given type

* acc_set_device_num(id, device_type): set the id of the device of the given type to use

11.4 MPI strategy

In this strategy, you will follow a classical MPI procedure where several tasks are executed. We will use either the
OpenACC directive or API to make each task use 1 GPU.

Have a look at the examples/C/init_openacc.h

%$%idrrun -m 4 -a —--gpus 2 —-option "-cpp"
// examples/C/MultiGPU_mpi_example.c
#include <stdio.h>
#include <mpi.h>
#include <openacc.h>
#include "../../examples/C/init_openacc.h"
int main(int argc, char** argv)
{
// Useful for OpenMPI and GPU DIRECT
initialisation_openacc();
MPI_Init (&argc, &argv);

(continues on next page)

79

OpenACC for GPU: an introduction

(continued from previous page)

// MPI Stuff

int my_rank;

int comm_size;

MPI_Comm_size (MPI_COMM_WORLD, &comm_size);
MPI_Comm_rank (MPI_COMM_WORLD, é&my_rank);
int a[100];

// OpenACC Stuff

#ifdef _OPENACC

acc_device_t device_type = acc_get_device_type();

int num_gpus = acc_get_num_devices (device_type);

int my_gpu my_ranksnum_gpus;

acc_set_device_num(my_gpu, device_type);

my_gpu = acc_get_device_num(device_type);

// Alternatively you can set the GPU number with #pragma acc set device_num(my._
~gpu)

#pragma acc parallel

{
#pragma acc loop
for(int i = 0; i< 100; ++1i)
afil = i;
}
#endif
printf ("Here is rank : I am using GPU of type . al42] = \n", my_rank, .

smy_gpu, device_type, al42]);
MPI_Finalize();
return O;

11.4.1 Remarks

It is possible to have several tasks accessing the same GPU. It can be useful if one task is not enough to keep the GPU
busy along the computation.

If you use NVIDIA GPU, you should have a look at the Multi Process Service.

11.5 Multithreading strategy

Another way to use several GPUs is with multiple threads. Each thread will use one GPU and several threads can share
1 GPU.

%$%idrrun -a -t -g 4 —--threads 4 --option "-cpp"
// examples/C/MultiGPU_openmp_example.c
#include <stdio.h>
#include <openacc.h>
#include <omp.h>
int main(int argc,char** argv)
{
#pragma omp parallel
{

(continues on next page)

80 Chapter 11. Multi GPU programming with OpenACC

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

OpenACC for GPU: an introduction

int my_rank = omp_get_thread_num();
// OpenACC Stuff
#ifdef _OPENACC

(continued from previous page)

acc_device_t dev_type = acc_get_device_type();

int num_gpus = acc_get_num_devices (dev_type) ;

int my_gpu = my_rank$num_gpus;
acc_set_device_num(my_gpu, dev_type);

// We check what GPU is really in use
my_gpu = acc_get_device_num(dev_type);

// Alternatively you can set the GPU number with #pragma acc set device_

snum (my_gpu)

printf ("Here is thread : I am using GPU

-~ dev_type);
#endif
}

11.6 Exercise

1. Copy one cell from a previous notebook with a sequential code

2. Modify the code to use several GPUs

3. Check the correctness of the figure

11.7 GPU to GPU data transfers

of type -\n", my_rank, my_gpu,

If you have several GPUs on your machine they are likely interconnected. For NVIDIA GPUs, there are 2 flavors of
connections: either PCI express or NVlink. NVLink is a fast interconnect between GPUs. Be careful since it might not
be available on your machine. The main difference between the two connections is the bandwidth for CPU/GPU transfers,

which is higher for NVlink.

The GPUDirect feature of CUDA-aware MPI libraries allows direct data transfers between GPUs without an intermediate
copy to the CPU memory. If you have access to an MPI CUDA-aware implementation with GPUDirect support, you

should definitely adapt your code to benefit from this feature.

For information, during this training course we are using OpenMPI which is CUDA-aware. You can find a list of CUDA-

aware implementation on NVIDIA website.

By default, the data transfers between GPUs are not direct. The scheme is the following:

1. The origin task generates a Device to Host data transfer

2. The origin task sends the data to the destination task.

3. The destination task generates a Host to Device data transfer

Here we can see that 2 transfers between Host and Device are necessary. This is costly and should be avoided if possible.

11.6. Exercise

81

https://www.nvidia.com/fr-fr/data-center/nvlink/
https://developer.nvidia.com/mpi-solutions-gpus

OpenACC for GPU: an introduction

11.7.1 acc host_data directive

To be able to transfer data directly between GPUs, we introduce the host_data directive.

#pragma acc host_data use_device (array)

This directive tells the compiler to assign the address of the variable to its value on the device. You can then use the
pointer with your MPI calls. You have to call the MPI functions on the host.

Here is a example of a code using GPU to GPU direct transfer.

int size = 1000;

int* array = (int*) malloc(size*sizeof (int));
#pragma acc enter_data create(array[0:1000])
// Perform some stuff on the GPU

#pragma acc parallel present (array[0:1000])

{

}
// Transfer the data between GPUs
if (my_rank == origin)
{
#pragma acc host_data use_device (array)
MPI_Send (array, size, MPI_INT, destination, tag, MPI_COMM_WORLD) ;
}
else if (my_rank == destination)
{
#pragma acc host_data use_device (array)
MPI_Recv (array, size, MPI_INT, origin, tag, MPI_COMM_WORLD, &status);

11.7.2 Exercise

As an exercise, you can complete the following MPI code that measures the bandwidth between the GPUs:
1. Add directives to create the buffers on the GPU

2. Measure the effective bandwidth between GPUs by adding the directives necessary to transfer data from one GPU
to another one in the following cases:

* Not using NVLink
» Using NVLink

$%idrrun -a —-m 4 —g 4

// examples/C/MultiGPU_mpi_exercise.c
#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#include <openacc.h>

#include <math.h>

#include "../../examples/C/init_openacc.h"
int main(int argc, char** argv)

{

initialisation_openacc();

(continues on next page)

82 Chapter 11. Multi GPU programming with OpenACC

OpenACC for GPU: an introduction

MPI_Init (&argc, &argv);
fflush (stdout) ;

double start;

double end;

(continued from previous page)

int size = 2e8/8;
double* send_buffer = (double*)malloc(size*sizeof (double));
double* receive_buffer = (double*)malloc(size*sizeof (double));

// MPI Stuff
int my_rank;
int comm_size;
int reps = 5;

double data_volume = (double)reps* (double)size*sizeof (double) *pow (1024,-3.0);

MPI_Comm_size (MPI_COMM_WORLD, &comm_size);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
MPI_Status status;

// OpenACC Stuff

acc_device_t device_type = acc_get_device_type();
int num_gpus = acc_get_num_devices (device_type);

int my_gpu = my_rank%num_gpus;
acc_set_device_num(my_gpu, device_type);
for (int i = 0; i<comm_size; ++1i)
{
for (int j=0; j < comm_size; ++73)
{
if (my_rank == 1 && i != J)
{
start = MPI_Wtime ();

for (int k = 0 ; k < reps; ++tk)
MPI_Ssend(send_buffer, size,

}
if (my_rank == j && i != 3J)
{

for (int k = 0 ; k < reps; ++k)

MPI_Recv (receive_buffer,
~status);
}
if (my_rank == i && 1 != j)
{
end = MPI_Wtime () ;
printf ("bandwidth >
start));

}
MPI_Finalize();
return O;

MPI_DOUBLE, j, 0, MPI_COMM_WORLD) ;

MPI_DOUBLE, i, 0, MPI_COMM_WORLD, &

GB/s\n", i, j, data_volume/ (end-

11.7. GPU to GPU data transfers

83

OpenACC for GPU: an introduction

Solution

o
5]

/

idrrun -a —-m 4 —-g 4

examples/C/MultiGPU_mpi_solution.c

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#include <openacc.h>

#include <math.h>

#include "../../examples/C/init_openacc.h"
int main(int argc, char** argv)

{

initialisation_openacc();
MPI_TInit (&argc, &argv);
fflush (stdout);

double start;

double end;

int size = 2e8/8;
double* send_buffer = (double*)malloc(size*sizeof (double));
double* receive_buffer = (double*)malloc(size*sizeof (double));

#pragma acc enter data create (send_buffer[:size], receive_ buffer[:size])

// MPI Stuff

int my_rank;

int comm_size;

int reps = 5;

double data_volume = (double)reps* (double)size*sizeof (double) *pow (1024,-3.0);
MPI_Comm_size (MPI_COMM_WORLD, &comm_size);

MPI_Comm_rank (MPI_COMM_WORLD, é&my_rank);

MPI_Status status;

// OpenACC Stuff
acc_device_t device_type = acc_get_device_type();
int num_gpus = acc_get_num_devices (device_type);
int my_gpu = my_rank%num_gpus;
acc_set_device_num(my_gpu, device_type);
for (int i = 0; i<comm_size; ++1i)
{
for (int j=0; j < comm_size; ++3)
{
if (my_rank == i && 1 != j)
{
start = MPI_Wtime ();
#pragma acc host_data use_device (send_buffer)
for (int k = 0 ; k < reps; ++k)
MPI_Ssend (send_buffer, size, MPI_DOUBLE, j, 0, MPI_COMM_WORLD);
}
if (my_rank == j && i != 7J)
{
#pragma acc host_data use_device (receive_buffer)
for (int k = 0 ; k < reps; ++k)
MPI_Recv (receive_buffer, size, MPI_DOUBLE, i, 0, MPI_COMM_WORLD, &

»status);

3
if (my_rank == i && 1 != j)
{

(continues on next page)

84

Chapter 11. Multi GPU programming with OpenACC

OpenACC for GPU: an introduction

end = MPI_Wtime ();
printf ("bandwidth
wstart));

}
}
MPI_Finalize();
return O;

Requirements:
* Get started
* Data management

e Multi GPU

(continued from previous page)

GB/s\n", 1, j, data_volume/ (end-

11.7. GPU to GPU data transfers

85

OpenACC for GPU: an introduction

86 Chapter 11. Multi GPU programming with OpenACC

CHAPTER
TWELVE

GENERATE MANDELBROT SET

12.1 Introduction

The Mandelbrot set is the set of complex numbers ¢ for which the function \begin{equation} f_c(z) = z"2+c
\end{equation} does not diverge when iterated from z = 0. Wikipedia

By Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC BY-SA 3.0, Link

In this hands-on you will generate a picture with the Mandelbrot set using a Multi-GPU version of the code. We use the
MPI language to split the work between the GPUs.

87

https://en.wikipedia.org/wiki/Mandelbrot_set

OpenACC for GPU: an introduction

12.2 What to do

Add the directives to use several GPUs. Here we do not need the GPUs to communicate. Be careful to allocate the
memory only for the part of the picture treated by the GPU and not the complete memory.

You can have a look at the file init_openacc.h. It gives the details to associate a rank with a GPU.

The default coordinates show the well known representation of the set. If you want to play around have a look at this
webpage giving interesting areas of the set on which you can “zoom”.

We have a bug for MPI in the notebooks and you need to save the file before running the next cell. It is a good way to
pratice manual building! Please add the correct extension for the language you are running.

%$%idrrun -a —-m 4 -g 4
// examples/C/mandelbrot_mpi_exercise.c
// you can use ° --option "-DMULTIGPU" ° to print the device info after filling the._
;openacc initialisation
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#ifdef _OPENACC
#include <openacc.h>
#endif
#include <complex.h>
#include <mpi.h>
// add openacc initialisation
void output (unsigned char* picture, unsigned int start, unsigned int num_elements)
{
MPI_File fh;
MPI_Offset woffset=start;

if (MPI_File_open (MPI_COMM_WORLD, "mandel.gray",MPI_MODE_WRONLY+MPI_MODE_CREATE, MPI_
«INFO_NULL, &fh) != MPI_SUCCESS)
{
fprintf (stderr, "ERROR in creating output file\n");
MPI_Abort (MPI_COMM_WORLD, 1) ;

MPI_File_write_at (fh,woffset,picture, num_elements,MPI_UNSIGNED_CHAR,MPI_STATUS_
~IGNORE) ;

MPI_File_close (&fh);

unsigned char mandelbrot_iterations (const float complex c)
{

unsigned char max_iter = 255;

unsigned char n = 0;

float complex z 0.0 + 0.0 * I;

while (abs(z*z) <= 2 && n < max_iter)

{

7 = B¥% ¥ Cf
dbdFL g
}
return n;
}
int main(int argc, char** argv)
{

(continues on next page)

88 Chapter 12. Generate Mandelbrot set

http://paulbourke.net/fractals/mandelbrot/
http://paulbourke.net/fractals/mandelbrot/

OpenACC for GPU: an introduction

#ifdef _OPENACC

// add initilisation openacc

#endif
MPI_Init (&argc, &argv);

(continued from previous page)

unsigned int width = (unsigned int) atoi(argv[l]);

float step_w = 1./width;

unsigned int height = (unsigned int) atoi(argv[2]);

float step_h = 1./height;

const float min_re = -2.;
const float max_re = 1.;
const float min_im = -1.;

const float max_im = 1.;

struct timespec end, start;

clock_gettime (CLOCK_MONOTONIC_RAW, &start);

int i;
int rank;
int nb_procs;

MPI_Comm_rank (MPI_COMM_WORLD,
MPI_Comm_size (MPI_COMM_WORLD,

unsigned int local_height

unsigned int first = 0;

&rank) ;
&nb_procs) ;

height / nb_procs;

unsigned int last = local_height;

unsigned int rest_eucli =

o

% nb_procs;

if ((rank==0) && (rank < rest_eucli))

++last;

for (i=1; 1 <= rank; ++1)
{
first += local_height;
last += local_height;
if (rank < rest_eucli)
{
++first;
++last;

if (rank < rest_eucli)
++local_height;

unsigned int num_elements

width*local_height;

if (rank == 0) printf ("Using MPI\n");
#if defined (_OPENACC) && defined (MULTIGPU)
printf ("I am rank %2d and my range is [%5d, %5d[ie %10d elements. I use GPU %d.

,over %d devices.\n", rank,
~total_devices);
#else

last, num_elements,info.current_device, info.

printf ("I am rank %2d and my range is [%5d, %5d[ie %10d elements.", rank, first,.

~last, num_elements);
fendif

(continues on next page)

12.2. What to do

89

OpenACC for GPU: an introduction

(continued from previous page)

unsigned char* restrict picture = (unsigned char*) malloc (num_
selements*sizeof (unsigned char));

for (unsigned int 1=0; i<local_height; ++1i)
for (unsigned int j=0; Jj<width; ++73)
{

float complex c;

c = min_re + Jj*step_w * (max_re — min_re) + \
I * (min_im + ((i+first) * step_h) * (max_im - min_im));
picture[width*i+j] = (unsigned char)255 - mandelbrot_iterations(c);

I3
output (picture, first*width, num_elements);
MPI_Finalize();

// Measure time

clock_gettime (CLOCK_MONOTONIC_RAW, &end);

unsigned long int delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec.
<— start.tv_nsec) / 1000;

printf ("The time to generate the mandelbrot picture was %$lu us\n", delta_us);

return EXIT_SUCCESS;

from idrcomp import show_gray
show_gray ("mandel.gray", 2000, 1000)

12.3 Solution

%$%idrrun -a —-m 4 —-g 4
// examples/C/mandelbrot_mpi_solution.c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#1ifdef _OPENACC
#include <openacc.h>
#endif
#include <complex.h>
#include <mpi.h>
#include "../../examples/C/init_openacc.h"
void output (unsigned char* picture, unsigned int start, unsigned int num_elements)
{
MPI_File fh;
MPI_Offset woffset=start;

if (MPI_File_open (MPI_COMM_WORLD, "mandel.gray",MPI_MODE_WRONLY+MPI_MODE_CREATE,MPI_
<INFO_NULL, &fh) != MPI_SUCCESS)
{
fprintf (stderr, "ERROR in creating output file\n");
MPI_Abort (MPI_COMM_WORLD, 1) ;

MPI_File_write_at (fh,woffset,picture, num_elements,MPI_UNSIGNED_CHAR,MPI_STATUS_
<IGNORE) ;
(continues on next page)

920 Chapter 12. Generate Mandelbrot set

OpenACC for GPU: an introduction

MPI_File_close (&fh);

#pragma acc routine seq
unsigned char mandelbrot_iterations (const float complex c)

{

unsigned char max_iter
unsigned char n = 0;
float complex z = 0.0 + 0.0 * I;

while

{

(abs (z

z = z*z
++n;

}

return

int main(int argc,

n;

255;

*z) <= 2 && n < max_iter)

+ @f

#ifdef _OPENACC
acc_info info = initialisation_openacc();

#endif

MPI_TInit (&argc, &argv);

unsigned int width = (unsigned int) atoi(argv[l1l]);
float step_w = 1./width;

unsigned int height = (unsigned int) atoi(argv(2]);
float step_h = 1./height;

const float min_re = -2.;

const float max_re = 1.;

const float min_im = -1.;

const float max_im = 1.;

struct timespec end,

char** argv)

start;

clock_gettime (CLOCK_MONOTONIC_RAW,

int 1i;

int rank;

int nb_procs;

MPI_Comm_rank (MPI_COMM_WORLD,
MPI_Comm_size (MPI_COMM_WORLD,

unsigned int
unsigned int
unsigned int
unsigned int

local_height

first = 0;

last = local_height;

rest_eucli

= height / nb_procs;

height

o
)

&start) ;

&rank) ;
&nb_procs) ;

nb_procs;

if ((rank==0) && (rank < rest_eucli))

++last

for (i=1; 1

{

first += local_height;
+= local_height;
if (rank < rest_eucli)

last

’

<= rank; ++1)

(continued from previous page)

(continues on next page)

12.3. Solution

91

OpenACC for GPU: an introduction

(continued from previous page)

++first;
++last;

if (rank < rest_eucli)
++local_height;

unsigned int num_elements = width*local_height;

if (rank == 0) printf ("Using MPI\n");

#ifdef _OPENACC

printf ("I am rank %2d and my range is [%5d, $%$5d[ie %10d elements. I use GPU 3d.
wover %d devices.\n", rank, first, last, num_elements,info.current_device, info.
~total_devices);

#else

printf ("I am rank $%$2d and my range is [$5d, $5d[ie %10d elements.", rank, first,
» last, num_elements);

#endif

unsigned char* restrict picture = (unsigned char*) malloc (num_

selements*sizeof (unsigned char));

#pragma acc data copyout (picture[0:num_elements])
{
#pragma acc parallel loop
for (unsigned int i=0; i<local_height; ++i)
for (unsigned int j=0; Jj<width; ++3)
{

float complex c;

c = min_re + j*step_w * (max_re - min_re) + \
I * (min_im + ((i+first) * step_h) * (max_im - min_im));
picture[width*i+j] = (unsigned char)255 - mandelbrot_iterations(c);

output (picture, first*width, num_elements);
MPI_Finalize();

// Measure time
clock_gettime (CLOCK_MONOTONIC_RAW, &end);

unsigned long int delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec.
— start.tv_nsec) / 1000;
printf ("The time to generate the mandelbrot picture was %Iu us\n", delta_us);

return EXIT_SUCCESS;

from idrcomp import show_gray
show_gray ("mandel.gray", 2000, 1000)

Requirements:
* Get started

* Data management

e Multi GPU

92 Chapter 12. Generate Mandelbrot set

CHAPTER
THIRTEEN

GENERATE MANDELBROT SET

13.1 Introduction

The Mandelbrot set is the set of complex numbers ¢ for which the function f.(z) = 22 + ¢ does not diverge when iterated
from z = 0. Wikipedia

By Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC BY-SA 3.0, Link

In this hands-on you will generate a picture with the Mandelbrot set using a Multi-GPU version of the code. We use the
OpenMP language to split the work between the GPUs.

93

https://en.wikipedia.org/wiki/Mandelbrot_set

OpenACC for GPU: an introduction

13.2 What to do

Add the directives to use several GPUs. Here we do not need the GPU to communicate. Be careful to allocate the
memory only for the part of the picture treated by the GPU and not the complete memory.

The default coordinates show the well known representation of the set. If you want to play around have a look at this
webpage giving interesting areas of the set on which you can “zoom”.

%$%idrrun —--cliopts "8000 4000" -t -g 4 —--threads 4 --get mandel.gray
// examples/C/mandelbrot_openmp_exercise.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include <time.h>
#ifdef _ OPENMP
#include <omp.h>
#endif
#ifdef _OPENACC
#include <openacc.h>
#endif
void output (unsigned char* picture, unsigned int width, unsigned int height)
{
FILE* f = fopen("mandel.gray", "wb");
fwrite (picture, sizeof (unsigned char), width*height, £f);
fclose (f);

unsigned char mandelbrot_iterations (const float complex c)
{

unsigned char max_iter = 255;

unsigned char n = 0;

float complex z 0.0 + 0.0 * I;

while (abs(z*z) <= 2. && n < max_iter)

{

z = z*¥z + C;
++n;

}

return n;

int main(int argc, char** argv)

if (argc < 3)

{
printf ("Please give width and height of the world.");
return 1;

}

unsigned int width = (unsigned int) atoi(argv[1]);

float step_w = 1./width;

unsigned int height = (unsigned int) atoi(argv[2]);

float step_h = 1./height;

unsigned char* restrict picture = (unsigned char*).

smalloc (width*height*sizeof (unsigned char));
// Here we set the bonds of the coordinates of the picture.
const float min_re = -2;
const float max_re = 1;

(continues on next page)

94 Chapter 13. Generate Mandelbrot set

http://paulbourke.net/fractals/mandelbrot/
http://paulbourke.net/fractals/mandelbrot/

OpenACC for GPU: an introduction

(continued from previous page)

const float min_im = -1;
const float max_im = 1;

struct timespec end, start;
clock_gettime (CLOCK_MONOTONIC_RAW, &start);

int rank = 0;

unsigned int first = 0;

unsigned int last = height;

int num_elements = width*height;
#pragma omp parallel private(first, last, rank) shared(picture) firstprivate (height,.
owidth, min_re, max_re, min_im, max_im, step_h, step_w, num _elements) default (none)
{
#1ifdef _ OPENMP

rank = omp_get_thread_num();

int num_threads = omp_get_num_threads();
first = rank * (height/num_threads);

last = (rank + 1) * (height/num_threads);

num_elements = width*height/num_threads;
#pragma omp master

{
printf ("Using OpenMP\n");

printf ("I am rank %2d and my range is [%5d, $5d[ie i elements\n", rank, .
~first, last, num_elements);

#endif

#ifdef _OPENACC

acc_device_t type = acc_get_device_type();

int num_gpu = acc_get_num_devices (type);

acc_set_device_num(rank%num_gpu, type);

printf ("I am rank %2d. I am using GPU 2d\n", rank, acc_get_device_num(type));
#endif

for (unsigned int i=first; i<last; ++1i)
for (unsigned int j=0; Jj<width; ++3)
{

float complex c;

c = min_re + j * step_w * (max_re - min_re) + \
I * (min_im + (1 * step_h) * (max_im - min_im));
picture[width*i+j] = (unsigned char) 255 - mandelbrot_iterations(c);

// Measure time
clock_gettime (CLOCK_MONOTONIC_RAW, &end);

unsigned long int delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec.
«— start.tv_nsec) / 1000;

printf ("The time to generate the mandelbrot picture was %10.5e s\n", delta_us/1.
eb);

output (picture, width, height);

from idrcomp import show_gray
show_gray ("mandel.gray", 8000, 4000)

13.2. What to do 95

OpenACC for GPU: an introduction

13.3 Solution

%$%idrrun —--cliopts

"8000 4000" -t -a —-g 4

// examples/C/mandelbrot_openmp_solution.c
<stdio.h>
<stdlib.h>
<math.h>
<complex.h>
<time.h>
#ifdef _OPENMP
#include <omp.h>

#include
#include
#include
#include
#include

#endif

#ifdef _OPENACC

#include <openacc.h>

#endif

void output (unsigned char* picture, unsigned int width, unsigned int height)

{

FILE* f = fopen("mandel.gray", "wb");

fwrite (picture,

fclose(f);

sizeof (unsigned char), width*height, £f);

#pragma acc routine seq
unsigned char mandelbrot_iterations (const float complex c)

{

unsigned char

unsigned char n =
float complex z =
(abs (z*z) <=

while

{

zZ

}

= z*z + c;
TG

return n;

int main(int argc,

if (argc < 3)

{

max_iter = 255;
0;
0.0 + 0.0 * I;

2. && n < max_iter)

char** argv)

printf ("Please give width and height of the world.");
return 1;

}

unsigned int width
= 1./width;

float step_w
unsigned int height
float step_h

const
const
const
const

float
float
float
float

(unsigned int) atoi(argv[1]);

= (unsigned int) atoi(argv([2]);

= 1./height;

unsigned char* restrict picture = (unsigned char*).
smalloc (width*height*sizeof (unsigned char));

// Here we set the

min_re
max_re
min_im
max_im

bonds of the coordinates of the picture.

struct timespec end, start;

(continues on next page)

96

Chapter 13. Generate Mandelbrot set

OpenACC for GPU: an introduction

(continued from previous page)

clock_gettime (CLOCK_MONOTONIC_RAW, &start);

int rank = 0;

unsigned int first = 0;

unsigned int last = height;

int num_elements = width*height;

#pragma omp parallel private(first, last, rank) shared(picture) firstprivate (height,.
swidth, min_re, max_re, min_im, max_im, step_h, step_w, num_elements) default (none)

{
#ifdef _OPENMP
rank = omp_get_thread_num();

int num_threads = omp_get_num_threads();
first = rank * (height/num_threads);
last = (rank + 1) * (height/num_threads);

num_elements = width*height/num_threads;
#pragma omp master

{
printf ("Using OpenMP\n");

printf ("I am rank %2d and my range is [%5d, %5d[ie %10d elements\n",
~first, last, num_elements);
#endif

#ifdef _OPENACC
acc_device_t type = acc_get_device_typel();
int num_gpu = acc_get_num_devices (type);
acc_set_device_num(rank%num_gpu, type);

rank, ..

printf ("I am rank %2d. I am using GPU 2d\n", rank, acc_get_device_num(type));

#endif

#pragma acc parallel copyout (picture[first*width:num_elements])
{
#pragma acc loop
for (unsigned int i=first; i<last; ++i)
for (unsigned int j=0; Jj<width; ++3)
{
float complex c;
c = min_re + j * step_w * (max_re - min_re) + \
I * (min_im + (i1 * step_h) * (max_im - min_im));

picture[width*i+j] = (unsigned char) 255 - mandelbrot_iterations(c);

// Measure time
clock_gettime (CLOCK_MONOTONIC_RAW, &end);

unsigned long int delta_us = (end.tv_sec - start.tv_sec) * 1000000 +
«— start.tv_nsec) / 1000;

printf ("The time to generate the mandelbrot picture was %10.5e s\n",
eb);

output (picture, width, height);

from idrcomp import show_gray
show_gray ("mandel.gray", 8000, 4000)

(end.tv_nsec.

delta_us/1.

13.3. Solution

97

OpenACC for GPU: an introduction

98 Chapter 13. Generate Mandelbrot set

Part 111

Day 3

99

OpenACC for GPU: an introduction

Requirements:
* Get started
* Atomic operations
¢ Manual building

* Data management

101

OpenACC for GPU: an introduction

102

CHAPTER
FOURTEEN

PERFORMING SEVERAL TASKS AT THE SAME TIME ON THE GPU

This part describes how to overlap several kernels on the GPU and/or how to overlap kernels with data transfers. This
feature is called asynchronism and will give you the possibility to get better performance when it is possible to implement
it.

On the GPU you can have several execution threads (called streams or activity queue) running at the same time indepen-

dently. A stream can be viewed as a pipeline that you feed with kernels and data transfers that have to be executed in
order.

So as a developer you can decide to activate several streams if your code is able to withstand them. OpenACC gives you
the possibility to manage streams with the tools:

* async clause
e wait clause or directive

By default, only one stream is created.

14.1 async clause

Some directives accept the clause async to run on another stream than the default one. You can specify an integer (which
can be a variable) to have several streams concurrently.

If you omit the optional integer then a “default” extra stream is used.

The directives which accept async are:
 the compute constructs: acc parallel,acc kernels,acc serial
« the unstructured data directives: acc enter data,acc exit data,acc update
e the acc wait directive

For example we can create 2 streams to allow data transfers and kernel overlap.

int streaml=1;
int stream2=2;
#pragma acc enter data copyin(array/[:size]) async(streaml)
// Some stuff
#pragma acc parallel async (streamZ2)
{
// A wonderful kernel

103

OpenACC for GPU: an introduction

14.2 wait clause

Running fast is important but having correct results is surely more important.

If you have a kernel that needs the result of another kernel or that a data transfer is complete then you have to wait for the
operations to finalize. You can add the wair clause (with an optional integer) to the directives:

 the compute constructs: acc parallel,acc kernels,acc serial
* the unstructured data directives: acc enter data,acc exit data,acc update

This example implements 2 streams but this time the kernel needs the data transfer on stream1 to complete before being
executed.

int streaml=1;
int stream2=2;
#pragma acc enter data copyin(array[:size]) async(streaml)
// Some stuff
#pragma acc parallel async(stream2) wait (streaml)
{
// A wonderful kernel

Furthermore you can wait for several streams to complete by giving a comma-separated list of integers as clause arguments

This example implements 2 streams but this time the kernel needs the data transfer on stream1 to complete before being
executed.

int streaml=1;
int stream2=2;
int stream3=3;
#pragma parallel loop async (stream3)
for (int i=0; 1 <size; ++1)
{
// Kernel launched on stream3
3
#pragma acc enter data copyin(array[:size]) async (streaml)
// Some stuff
#pragma acc parallel async(stream2) wait (streaml, stream3)
{
// A wonderful kernel

If you omit the clause options, then the operations will wait until all asynchronous operations fulfill.

#pragma acc parallel wait

{
// A wonderful kernel

104 Chapter 14. Performing several tasks at the same time on the GPU

OpenACC for GPU: an introduction

14.3 wait directive

wait comes also as a standalone directive.

int streaml=1;
int stream2=2;
int stream3=3;
#pragma parallel loop async (stream3)
for (int i=0; i <size; ++1)
{
// Kernel launched on stream3
}
#pragma acc enter data copyin(array[:size]) async(streaml)
// Some stuff

#pragma acc wait (stream3)
#pragma acc parallel async(streamZ2)

{
// A wonderful kernel

14.4 Exercise

In this exercise you have to compute the matrix product C' = A x B.
You have to add directives to:
* use the program lifetime unstructured data region to allocate memory on the GPU
e perform the matrix initialization on the GPU
 perform the matrix product on the GPU
* create and analyze a profile (add the option ——profile to idrrun)
* save the .qdrep file
* check what can be done asynchronously and implement it
* create and analyze a profile (add the option ——profile to idrrun)
* save the .qdrep file

Your solution is considered correct if no implicit action are done.
%$%idrrun -a

// examples/C/async_async_exercise.c

#include <stdio.h>

#include <stdlib.h>

double* create_mat (int dim, int stream)

{
double* mat = (double*) malloc (dim*dim*sizeof (double));
return mat;

(continues on next page)

14.3. wait directive 105

OpenACC for GPU: an introduction

(continued from previous page)

void init_mat (double* mat, int dim, double diag, int stream)
{
for (int i=0; i<dim; ++i)
for (int j=0; j<dim; ++7)
{
mat [i*dim+j] = 0.;
}
for (int i=0; i<dim; ++i)
mat [i*dim+i] = diag;

int main (void)

int dim =

5000;

double* restrict A = create_mat (dim, 1);
double* restrict create_mat (dim, 2);
double* restrict C = create_mat (dim, 3);

w
Il

init_mat (A, dim, 6.0, 1);
init_mat (B, dim, 2);
init_mat (C, dim, .0, 3);

[@REN|
()
~

for (int i=0; i<dim; ++i)
for (int k=0; k<dim; ++k)
for (int j=0; j<dim; ++3)
{
Cli*dim+j] += A[i*dim+k] * B[k*dim+7j];

3
printf ("Check that value is equal to 42.: \n", C[0]);
return O;

14.4.1 Solution

$%idrrun -a

// examples/C/async_async_solution.c

#include <stdio.h>

#include <stdlib.h>

double* create_mat (int dim, int stream)

{
double* mat = (double*) malloc (dim*dim*sizeof (double)) ;
#pragma acc enter data create (mat[0:dim*dim]) async (stream)
return mat;

void init_mat (double* mat, int dim, double diag, int stream)
{
#pragma acc parallel loop present (mat[0:dim*dim]) async (stream)
for (int 1=0; i<dim; ++i)
#pragma acc loop
for (int j=0; j<dim; ++3j)
{
mat [i*dim+j] = 0.;

(continues on next page)

106 Chapter 14. Performing several tasks at the same time on the GPU

OpenACC for GPU: an introduction

(continued from previous page)

}
#pragma acc parallel loop present (mat[0:dim*dim]) async (stream)
for (int i=0; i<dim; ++1i)

mat [i*dim+i] = diag;

int main (void)

int dim = 5000;

double* restrict A
double* restrict
double* restrict C

create_mat (dim, 1);
create_mat (dim, 2);
create_mat (dim, 3);

w
Il

init_mat (A, dim, 6.0, 1);
init_mat (B, dim, 7.0, 2);
init_mat (C, dim, .0, 3);

o

#pragma acc parallel present (A[:dim*dim], B[:dim*dim], C[:dim*dim]) wait (1,2,3)
{
#pragma acc loop gang vector collapse (3)
for (int i=0; i<dim; ++1i)
for (int k=0; k<dim; ++k)
for (int j=0; j<dim; ++3j)
{
#pragma acc atomic update
Cl[i*dim+j] += A[i*dim+k] * B[k*dim+]];
}
}
#pragma acc exit data delete(A[:dim*dim], B[:dim*dim]) copyout (C[:dim*dim])
printf ("Check that value is equal to 42.: %f\n", C[0]);
return 0O;

In an ideal world, the solution would produce a profile like this one:

stream2|enter data create(B) _|init_mat(B

streamjenter data create(A)| [init_ mat(A)

default stream matmul(A,B.C) exit data copyout(C)

Program Lifetime Data region

streama3[enter data create(C)| [init mat(C)
async(3) async(3)

async(2) async(2)

async(1) async(1)

| wait(1,.23) |

CPU

14.4. Exercise 107

OpenACC for GPU: an introduction

14.4.2 Comments

 Several threads will update the same memory location for C so you have to use an acc atomic update

* collapse is used to fuse the 3 loops. It helps the compiler to generate a more efficient code

14.5 Advanced NVIDIA compiler option to use Pinned Memory:
—gpu=pinned
If you look at the profiles of your code (at this point “if” should be “when”), you can see that the memory transfers occurs

in chunks of more or less constant size. Even though you have a large memory block it will be split into several smaller
pieces which have the size of a memory page.

Memory not pinned:
~ CUDA HW (0000:8A:00.0 - Tesla \
- (Al Streams) i e 606 00 0O OCOCOOOCO U0

b 25.4% Kernels

1
|
1

» 95.6% Stream 13

Memcpy DtoH)

74.6% Memory 0o 060 00 00O COOCOOD
b 95.6%Stream 13 (e o 6 0 00 0O OCOOCGCOOD
3 streams hidden... -] A
Memory pinned:
~ CUDA HW (0000:8A:00.0 - Tesla \,
[— e
~ [All Streams] :. [Sy T]
) e TR
25.4% Kernels .
74.6% Memory [Memcpy DioH)
i |
]|

3 streams hidden... -

3

Usually the transfer time is reduced when pinned memory is used. It can also cause some segmentation faults. Do your
testing!

14.5.1 Bonus

You can launch the exercise with $$idrrun -a --profile --accopts "cc70,pinned" to test the effect
of pinned memory. You can save a profile to compare the 3 versions.

Requirements:
* Get started

* Data management

108 Chapter 14. Performing several tasks at the same time on the GPU

CHAPTER
FIFTEEN

ATOMIC OPERATIONS

The acc atomic is kind of a generalization of the concept of reduction that we saw in (Get
started)[../Get_started.ipynb]. However the mechanism is different and less efficient than the one used for reduc-
tions. So if you have the choice, use a reduction clause.

The idea is to make sure that only one thread at a time can perform a read and/or write operation on a shared variable.

The syntax of the directive depends on the clause you use.

15.1 Syntax

15.1.1 read, write, update

#pragma acc atomic <clause>
// One atomic operation

The clauses read, write and update only apply to the line immediately below the directive.

15.1.2 capture

The capture clause can work on a block of code:

#pragma acc atomic capture

{

//Several atomic operations

}

In C it can also work on the capture operation just below.

#pragma acc atomic capture
// One capture operation

109

OpenACC for GPU: an introduction

15.2 Restrictions

The complete list of restrictions is available in the OpenACC specification.
We need the following information to understand the restrictions for each clause:
* vand x are scalar values

* binop: binary operator (for example: +, -, *, /, ++, —, etc)

* expr is an expression that reduces to a scalar and must have precedence over binop

15.2.1 read

The expression must be of the form:

#pragma acc atomic read

vV = X;

15.2.2 write

The expression must have the form:

#pragma acc atomic write

X = expr;

15.2.3 update

Several forms are available:

//x = x _binop_ expr;
#pragma acc update
X = x + (3*10);

//x_binop_;
#pragma acc update
X++;

//_binop_x
#pragma acc update
—x;

//x _binop_= expr
#pragma acc update
x += 30;

110

Chapter 15. Atomic operations

OpenACC for GPU: an introduction

15.2.4 capture

A capture is an operation where you set a variable with the value of an updated variable:

//v = x = x _binop_ expr;
#pragma acc capture
v =x =x + (3*10);

//v = x_binop_;
#pragma acc capture
v o= Xt+;

//v = _binop_x
#pragma acc capture
v o= ——X;

//v = x _binop_= expr
#pragma acc capture
v = x += 30;

15.3 Exercise

Let’s check if the default random number generator provided by the standard library gives good results.

In the example we generate an array of integers randomly set from O to 9. The purpose is to check if we have a uniform
distribution.

‘We cannot perform the initialization on the GPU since the rand() function is not OpenACC aware.
You have to:
¢ Create a kernel for the integer counting

¢ Make sure that the results are correct (you should have around 10% for each number)
%$%idrrun -a
// examples/C/atomic_exercise.c
#include <stdio.h>
#include <stdlib.h>
int main (void)
{
// Histogram allocation and initialization
int histo[10];
for (int i=0; i<10; ++1i)
histo[i] = 0;
size_t nshots = (size_t) 1e9;

// Allocate memory for the random numbers
int* shots = (int*) malloc (nshots*sizeof (int));

srand ((unsigned) 12345900);

// Fill the array on the CPU (rand is not available on GPU with Nvidia Compilers)
for (size_t i=0; i< nshots; ++1i)
{

shots[i] = (int) rand() % 10;

(continues on next page)

15.3. Exercise 111

OpenACC for GPU: an introduction

(continued from previous page)

// Count the number of time each number was drawn
for (size_t i=0; i<nshots; ++1i)
{

histo[shots[i]]++;

// Print results

for (int i=0; i<10; ++1i)
printf ("¢3d: 210d (%5.3f)\n", i, histo[i], (double) histo[i]/1.e9);

return O;

15.3.1 Solution

$%idrrun -a

//

examples/C/atomic_solution.c

#include <stdio.h>
#include <stdlib.h>
int main (void)

{
// Histogram allocation and initialization
int histo[107];
for (int i=0; i<10; ++i)
histo[i] = 0;
size_t nshots = (size_t) 1e9;
// Allocate memory for the random numbers
int* shots = (int*) malloc(nshots*sizeof (int));
srand ((unsigned) 12345900) ;
// Fill the array on the CPU (rand is not available on GPU with Nvidia Compilers)
for (size_t i=0; i< nshots; ++1i)
{
shots[i] = (int) rand()%10;
}
// Count the number of time each number was drawn
#pragma acc parallel loop copyin(shots[:nshots]) copyout (histo[0:10])
for (size_t i=0; i<nshots; ++1i)
{
#pragma acc atomic update
histo[shots[i]]++;
}
// Print results
for (int i=0; i<10; ++i)
printf("%3d: %10d (%5.3f)\n", i, histo[i], (double) histo[i]/1.e9);
return 0;
}
112 Chapter 15. Atomic operations

OpenACC for GPU: an introduction

With compilers supporting it you can replace the atomic operation with a reduction on the array histo.

acc parallel loop reduction(+:histo)

Requirements:
* Get Started
* Data Management

* Atomic Operations

15.3. Exercise 113

OpenACC for GPU: an introduction

114 Chapter 15. Atomic operations

CHAPTER
SIXTEEN

DEEP COPY

Complex data structures, including struct and classes in C or derived datatypes with pointers and allocatable in Fortran,
are frequent. Ways to managed them include:

¢ using CUDA unified memory with the compilation flag —gpu : managed, but the cost of memory allocation will
be higher and it will apply to all allocatable variables

» flatten the derived datatypes by using temporary variables and then perform data transfers on the temporary variables
* using deep copy.

Two ways are possible to manage deep copy:
* top-down deep copy with an implicit attach behavior

* bottom-up deep copy with an explicit attach behavior

16.1 Top-down deep copy

In order to implement the top-down deep copy, we should copy to the device the base structure first and then the children
structures. For each children transfer, the compiler’s implementation will check if the pointers to the children (they are
transferred with the parent structure) are present. If they are, an implicit attach behavior is performed and the parents on
the device will point toward the children that are newly put on the device.

Please note that it is not mandatory to transfer all the children structure, only the ones that calculations on the device
require.

16.1.1 Syntax

typedef class{
float *vx, *vy, *vz;
tvelocity;

velocity U;

U.vx = (float*) malloc(sizeX*sizeof (float));;
U.vy = (float*) malloc(sizeY*sizeof (float));
U.vz = (float*) malloc(sizeZ*sizeof (float));

#pragma acc enter data copy (U)
#pragma acc enter data copy (U.vx[0:sizeX], U.vy[O:sizeY], U.vz[0:sizeZ])

(continues on next page)

115

OpenACC for GPU: an introduction

(continued from previous page)

// A humonguous calculation

16.1.2 Example

In this example we store 2 arrays in a structure/derived type and use a deep copy to make them available on the GPU.

$%idrrun -a

//

examples/C/Deep_copy_example.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

typedef struct

{

double* s;
double* c;

} Array;

Array* allocate_array(size_t size);

Array* allocate_array(size_t size)

{

int

Array* arr = (Array*) malloc(sizeof (Array));
arr->s = (double*) malloc(size*sizeof (double));
arr->c = (double*) malloc(size*sizeof (double));

return arr;

main (void)

int size=100000;
double sum[size];

Array* vec;
vec = allocate_array(size);

#pragma acc data create(vec, vec->s[:size], vec->c[:size]) copyout (sum)
{

#pragma acc parallel

{
#pragma acc loop
for (int 1=0; i<size;++1i)
{
vec->s[1] = sin(i*M_PI/size) *sin(i*M_PI/size);
vec—->c[i] = cos(i*M_PI/size)*cos(i*M_PI/size);
}
}
#pragma acc parallel
{
#pragma acc loop
for (int i=1; i<size ; ++i)
sum[i] = vec—->s[i] + vec—->c[size - i];
}

(continues on next page)

116

Chapter 16. Deep copy

OpenACC for GPU: an introduction

(continued from previous page)

}// end of structured data region
printf ("sum([42] = \n", sum[42]);

16.1.3 Exercise

In this exercise, we determine the radial distribution function (RDF) for an ensemble of particles that is read from a file.
The position of the particles can be use as a demonstration on the implementation of the deep copy. You can run this
example at the end of the next exercise to check the structure of the box at the end of the simulation.

First you need to copy some files:

%%bash
cp ../../examples/dyn.xyz

You need to pass ——cliopts "0.5 15.5" toidrrun.

%$%idrrun -a --cliopts "0.5 15.5"

// examples/C/Deep_copy_exercise.c
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

include <math.h>

#include <float.h>

typedef struct
{
size_t size;
double* data;
} Array;

typedef struct
{
Array* x;
Array* y;
Array* z;
} Coordinates;

typedef struct
{

size_t natoms; // number of atoms
double 1x; // box length in each dimension
double ly;
double 1z;
} Config;

Array* allocate_array(size_t size);

void free_array (Array* arr);

Coordinates* read_coords (char* filepath, Config *config);
void free_coords (Coordinates* coords);

Array* allocate_array(size_t size)

{

Array* arr = (Array*) malloc(sizeof (Array));

(continues on next page)

16.1. Top-down deep copy 117

OpenACC for GPU: an introduction

(continued from previous page)

arr->size = size;

arr->data = (double*) malloc(size*sizeof (double));
// OpenACC here

return arr;

Coordinates* allocate_coords (size_t size)
{
Coordinates* coords = (Coordinates*) malloc(sizeof (Coordinates));
// OpenACC here
coords—->x = allocate_array(size);
coords->y = allocate_array(size);
coords—>z = allocate_array(size);
return coords;

void free_array (Array* arr)
{
// OpenACC here
free (arr—->data);
free(arr);

void free_coords (Coordinates* coords)
{
// OpenACC here
free_array (coords—>x);
free_array (coords—>y);
free_array (coords—>z);
free(coords);

Coordinates* read_coords (char* filepath, Config* conf)
{
FILE* fptr = fopen(filepath, "r");
char* line = NULL;
size_t len = 0;
size_t 1 = 0;
char n[20], x[20], y[20], z[20], vx[20], vy[20], vz[20];

if (fptr == NULL)
exit (EXIT_FAILURE);

getline(&line, &len, fptr);
sscanf (line, "%s", n);
conf->natoms = atoi(n);
getline(&line, &len, fptr);
sscanf (line, "%s", n);
conf->1x = atof (n)
conf->1ly = atof (n);
conf->1z = atof (n)
// OpenACC here
printf ("Number of atoms in file: \n", filepath, conf->natoms);

Coordinates* coords = allocate_coords (conf->natoms) ;

(continues on next page)

118 Chapter 16. Deep copy

OpenACC for GPU: an introduction

(continued from previous page)

while (i < conf->natoms)
{
getline(&line, &len, fptr);
sscanf (line, "$%s %s %s %s %s %s @s", n, X, y, z, VX, Vy, Vz);
coords—->x->data[i] = atof (x);

coords—->y->datal[i] = atof(y);
coords—->z—->data[i] = atof(z);
++1i;

}

// OpenACC here
fclose (fptr);
return coords;

int main(int argc, char** argv)

double deltaR, rCutOff;
FILE* fPtr;

char* input;

double xij, yij, zij, rij;

int d;
if (argc < 3 || argc > 4)
{
fprintf (stderr, "%s", "ERROR: Wrong number of parameters.\n");
fprintf (stderr, "%s", "ERROR: The program requires at least two parameters:\n
>") 4
fprintf (stderr, "%s", "ERROR: deltaR, the length of each bin, and \n");
fprintf (stderr, "$s", "ERROR: rCutoff, the total length (rcut < box_length/2).
=\n")
fprintf (stderr, "%s", "ERROR: Usage example: ./rdf 0.5 15.5 [input]\n");

exit (EXIT_FAILURE) ;

deltaR = atof (argv[l]);
rCutOff = atof (argv([2]);

if (argc == 4)

input = argv[3];
else

input = "./dyn.xyz";

int maxbin = rCutOff/deltaR + 1;

int* hist = (int*) malloc (maxbin*sizeof (int));
double* gr = (double*) malloc (maxbin*sizeof (double));
// OpenACC here

for (size_t i=0; i<maxbin; ++1i)
hist[i] = 0;

Config* conf = (Config*) malloc(sizeof (Config));
Coordinates* coords = read_coords (input, conf);

// OpenACC here
for (int j = 0; j < conf->natoms; ++3)

(continues on next page)

16.1. Top-down deep copy 119

OpenACC for GPU: an introduction

(continued from previous page)

// OpenACC here

for (int i = 0; i < conf->natoms; ++1i)

if (i !'= 3j)

{
x1ij = coords->x->data[j]-coords->x->datal[i];
yij = coords->y->data[j]-coords->y->datal[i];
zij = coords->z->data[j]-coords->z->datal[i];
xij —= floor(xij/conf->1x + 0.5) *conf->1x;
yij —-= floor(yij/conf->1ly + 0.5) *conf->ly;
zij -= floor(zij/conf->1lz + 0.5) *conf->lz;
rij = xij*xij + yij*yij + zij*zij;
d = (int) (sqgrt(rij)/deltaR);

if (d < maxbin)
// OpenACC here
++hist [d];

double rho = ((double) conf->natoms) / ((double) (conf->1x * conf->1ly * conf->1z)).
s* 4.0 / 3.0 * acos(-1.0);
// OpenACC here

for (int 1 = 0; i < maxbin; ++i)

{
double nideal = rho * (pow((i+l)*deltaR,3) - pow(i*deltaR,3));
gr[i] = ((double) hist[i]) / (nideal*conf->natoms) ;

}
// OpenACC here

fPtr = fopen ("RDE","w");

for (int i = 0; i < maxbin; ++1i)
fprintf (fPtr, " \n", i*deltaR, gr[il]);

fclose (fPtr);

// OpenACC here

free (hist);

free(gr);

// OpenACC here

free(conf);

free_coords (coords) ;

return O;

import matplotlib.pyplot as plt

import numpy as np

rdf = np.genfromtxt ("RDE", delimiter=' "').T
plt.plot (rdf[0], rdf[1])

120 Chapter 16. Deep copy

OpenACC for GPU: an introduction

16.1.4 Solution

%$%idrrun -a —--cliopts "0.5 15.5"

// examples/C/Deep_copy_solution.c
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <float.h>

typedef struct
{
size_t size;
double* data;
} Array;

typedef struct
{
Array* x;
Array* y;
Array* z;
} Coordinates;

typedef struct
{

size_t natoms; // number of atoms
double 1x; // box length in each dimension
double ly;
double 1lz;
} Config;

Array* allocate_array(size_t size);

void free_array(Array* arr);

Coordinates* read_coords (char* filepath, Config *config);
void free_coords (Coordinates* coords);

Array* allocate_array(size_t size)

{

Array* arr = (Array*) malloc(sizeof (Array));
arr->size = size;
arr->data = (double*) malloc(size*sizeof (double));

#pragma acc enter data create(arr, arr->datal[:size]) copyin(arr->size)
return arr;

Coordinates* allocate_coords (size_t size)

{

Coordinates* coords = (Coordinates*) malloc (sizeof (Coordinates));
#pragma acc enter data create (coords)

coords—->x = allocate_array(size);

coords—>y = allocate_array(size);

coords—>z = allocate_array(size);

return coords;

void free_array (Array* arr)

{

(continues on next page)

16.1. Top-down deep copy 121

OpenACC for GPU: an introduction

#pragma acc exit data delete (arr—->data,arr)
free (arr—->data);
free(arr);

void free_coords (Coordinates* coords)
{
#pragma acc exit data delete (coords)
free_array (coords—>x);
free_array (coords—>y);
free_array (coords—>z);
free(coords);

Coordinates* read_coords (char* filepath, Config* conf)

{

FILE* fptr fopen(filepath, "r");
char* line = NULL;

size_t len = 0;
size_t 1 = 0;
char n[20], x[20], yI[20], z[20], vx[20], vy[20], vz[20];
if (fptr == NULL)
exit (EXIT_FAILURE) ;
getline(&line, &len, fptr);
sscanf (line, "%s", n);
conf->natoms = atoi(n);
getline(&line, &len, fptr);
sscanf (line, "%s", n);
conf->1x = atof (n);
conf->1ly = atof (n);
conf->1z = atof (n);
#pragma acc enter data copyin (conf)
printf ("Number of atoms in %s file: %d\n", filepath,

Coordinates* coords = allocate_coords (conf->natoms) ;

while (i < conf->natoms)

{
getline(&line, &len, fptr);
sscanf (line, "$%s %s %s %s $s
coords—>x->data[i] = atof (x);

coords—>y->datal[i] = atof(y);
coords—>z->data[i] = atof(z);
TFaral g

}

r Ny X, Yy

z, VX,

Vy,

(continued from previous page)

conf->natoms) ;

vz);

#pragma acc update device (coords—>x->data/[:conf->natoms],coords—->y—->data[:conf—>

snatoms], coords—>z->data /[:conf->natoms])
fclose (fptr);
return coords;

int main(int argc, char** argv)
{
double deltaR, rCutOff;

(continues on next page)

122

Chapter 16. Deep copy

OpenACC for GPU: an introduction

(continued from previous page)
FILE* fPtr;
char* input;
double xij, yij, zij, rij;

int d;
if (argc < 3 || argc > 4)
{
fprintf (stderr, "%s", "ERROR: Wrong number of parameters.\n");
fprintf (stderr, "%s", "ERROR: The program requires at least two parameters:\n

=");

fprintf (stderr, "%s", "ERROR: deltaR, the length of each bin, and \n");

fprintf (stderr, "$s", "ERROR: rCutoff, the total length (rcut < box_length/2).
-\n") ;
fprintf (stderr, "%s", "ERROR: Usage example: ./rdf 0.5 15.5 [input]\n");
exit (EXIT_FAILURE) ;
}
else
{

deltaR = atof(argv([1l]);
rCutOff = atof (argv([2]);

if (argc == 4)

input = argv[3];
else

input = "./dyn.xyz";

int maxbin = rCutOff/deltaR + 1;

int* hist = (int*) malloc (maxbin*sizeof (int));

double* gr = (double*) malloc (maxbin*sizeof (double));
#pragma acc enter data create (hist[:maxbin],gr[:maxbin])

#pragma acc parallel loop present (hist[:maxbin])
for (size_t i=0; i<maxbin; ++1i)
hist[i] = 0;

Config* conf = (Config*) malloc(sizeof (Confiqg));
Coordinates* coords = read_coords (input, conf);

#pragma acc parallel loop present (conf,coords, coords—>x,coords—>y,coords—>z) \
present (coords—->x—->data[:conf->natoms], coords—>y—>

~datal:conf->natoms], coords—->z->data[:conf->natoms])

for (int j = 0; j < conf->natoms; ++7)
#pragma acc loop private(xij,yij,zij,rij,d)
for (int i = 0; i < conf->natoms; ++i)
if (1 !'=)
{
xij = coords->x->data[j]-coords->x->datal[i];
yij = coords->y->datal[j]-coords->y->datali];
zij = coords->z->datal[]j]-coords->z->datal[i];
xij —= floor(xij/conf->1x + 0.5) *conf->1x;
yij -= floor(yij/conf->1ly + 0.5) *conf->ly;
zij —-= floor(zij/conf->1z + 0.5) *conf->1z;
rij = xij*xij + yij*yij + zij*zij;
d = (int) (sgrt(rij)/deltaR);

if (d < maxbin)
#pragma acc atomic update

(continues on next page)

16.1.

Top-down deep copy 123

OpenACC for GPU: an introduction

(continued from previous page)

++hist [d];

double rho = ((double) conf->natoms) / ((double) (conf->1x * conf->ly * conf->1z)).
o* 4.0 / 3.0 * acos(-1.0);
#pragma acc parallel loop present (hist[:maxbin],qgr/[:maxbin])

for (int 1 = 0; 1 < maxbin; ++1i)

{
double nideal = rho * (pow((i+1l)*deltaR,3) - pow(i*deltaR,3));
gr[i] = ((double) hist[i]) / (nideal*conf->natoms) ;

}
#pragma acc update self (gr[:maxbin])

fPtr = fopen ("RDE","w");

for (int 1 = 0; i < maxbin; ++i)
fprintf (fPtr, " \n", i*deltaR, gr[il]);

fclose (fPtr);

#pragma acc exit data delete (hist,qgr)

free (hist);

free(gr);

#pragma acc exit data delete (conf)

free (conf);

free_coords (coords) ;

return 0;

import matplotlib.pyplot as plt

import numpy as np

rdf = np.genfromtxt ("RDE", delimiter=' ').T
plt.plot (rdf[0], rdf[1])

16.2 Deep copy with manual attachment

It is also possible to proceed to a bottom-up deep copy, in which you can first copy sub-objects on the accelerator and
then attach them to existing children. With this procedure you will have to attach explicitly the pointers to the children.
This can be easily apprehend with the subsequent code.

typedef class{
float *vx, *vy, *vz;
tvelocity;

velocity U;

#pragma acc enter data copy(U.vx[0:size], U.vy[O:size], U.vz[0:size])
#pragma acc enter data copy (U)

Here the first copyin will pass the arrays on the device memory and the second will provide the complex datatype. But
the pointers of the complex datatype (such as v0.x) will still reference the host structure. We should thus provide to the
compiler the information of the datatype as it should be on the device. This is done by adding an at tach directive.

124 Chapter 16. Deep copy

OpenACC for GPU: an introduction

typedef class{
float *vx, *vy, *vz;
tvelocity;

velocity U;

#pragma acc enter data copy(U.vx[0:size], U.vy[O:size], U.vz[0:size])
#pragma acc enter data copy(U) attach(U.vx, U.vy, U.vz)

Here, the pointer and its target are present on the device. The directive will inform the compiler to replace the host pointer
with the corresponding device pointer in device memory.

The detach clause can be use to free the structure memory but is not mandatory.

#pragma acc exit data detach (U.vx, U.vy, U.vz) // not required
#pragma acc exit data copyout (U.vx, U.vy, U.vz)
#pragma acc exit data copyout (U)

16.2.1 Exercise

In the following exercise we’ll resolve the Lotka—Volterra predator—prey equations

for the prey population:

% = birth,z — death_xy

and for the predator population:

% = birth,xy — death,y.

%$%idrrun -a

// examples/C/Deep_copy_attach_detach_exercise.c
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <float.h>

typedef struct

{
double* count;
double* birth_rate;
double* death_rate;

} Population;

void free_pop (Population* pop)
{
// Add openacc directives
free (pop—>count) ;
free (pop—>birth_rate);
free (pop—>death_rate) ;
free (pop) ;

(continues on next page)

16.2. Deep copy with manual attachment 125

OpenACC for GPU: an introduction

void derivee (double* x,
{
// Add openacc direct
dx[0]
dx[1] =

void rk4 (Population* pop,

{
double* x_temp =
double* k1 =
double* k2 =
double* k3 =
double* k4 =
double halfdt =

// Add openacc di
for (int i=0; i<
x_temp[i] =

Population* pop,

ives

pop—>birth_rate[0]*x[0]
—-pop—>death_rate[1]*x[1]

double* dx)

double dt)

(double™)
(double¥*)
(double™*)
(double™)
(double¥*)
dt / 2.0;

rectives
2; it++)

2*sizeof (double
2*sizeof (double)) ;

malloc ())
())

malloc (2*sizeof (double));
())
())

’

malloc

’

malloc (2*sizeof (double
malloc (2*sizeof (double

’

pop->count [i];

derivee (x_temp, pop, kl);
for (int 1=0; i<2; i++)

x_temp[i] = pop->count[i] + k1[i]*halfdt;
derivee (x_temp, pop, k2);
for (int i=0; i<2; i++)

x_temp[i] = pop->count[i] + k2[i]*halfdt;
derivee (x_temp, pop, k3);
for (int i=0; 1i<2; i++)

x_temp[i] = pop-—>count[i] + k3[i]*dt;
derivee (x_temp, pop, k4);
for (int 1=0; i<2; i++)

pop—>count [i]
<k4[i]);
}

int main (void)

{

double ti = 0.00;
double dt = 0.05;
double tmax = 100.00;

Population *pred_prey
pred_prey—>count

pred_prey->birth_rate
pred_prey->death_rate

pred_prey->count [1]
pred_prey->birth_rate
pred_prey->death_rate

pred_prey—>count [0]
pred_prey->birth_rate

= pop->count [i] +

= (Population *)

= (double*) malloc (2*sizeof (double));

= (double*) malloc(2*sizeof (double));

= (double*) malloc (2*sizeof (double));
= 15.00; // predator count

[1] = 0.01; // predator birth rate

[1] = 1.00; // predator death rate
= 100.00; // prey count

[0] = 2.00; // prey birth rate

(dt/6.0) * (k1[i]

+ 2.0*k2[1]

(continued from previous page)

- pop—>death_rate[0]*x[0]*x[1];
+ pop->birth_rate[1]*x[0]*x[1];

F 2.07R3[[L]

malloc (sizeof (Population));

(continues on next page)

126

Chapter 16. Deep copy

OpenACC for GPU: an introduction

pred_prey->death_rate[0] = 0.02;
FILE* fichier = fopen ("output",
// Add openacc directives
while (ti < tmax)

{

IIWH) ;

ti += dt;
rk4 (pred_prey, dt);
for (int i=0; i<2; i++)
{
// Add openacc directives
I3
fprintf (fichier, "$1f $%s $1f
sprey—>count [11]);
}
fclose (fichier);
free_pop (pred_prey) ;
return 0;

from matplotlib import pyplot as plt
import numpy as np

data
time =
preys =
predators =

np.genfromtxt ("output",
datal[:, 0]

datal[:, 1]
datal:,

2]

plt.plot (time,
plt.plot (time,

preys, color =
predators,

'blue')

color = 'red'")

16.2.2 Solution

//
#include
#include
#include
#include
#include

idrrun -a

<stdio.h>
<stdlib.h>
<string.h>
<math.h>
<float.h>

typedef struct

{
double* count;
double* birth_rate;
double* death_rate;

} Population;

void free_pop (Population*

{

pop)

#pragma acc exit data
#pragma acc exit data
#pragma acc exit data

detach (pop->count,
delete (pop—>count,
delete (pop)

¢s %$1f\n",

delimiter="';")

(continued from previous page)

// prey death rate

ti,";", pred_prey->count[0],";",pred_

examples/C/Deep_copy_attach_detach_solution.c

pop—->birth_rate,
pop—>birth_rate,

pop—>death_rate)
pop—>death_rate)

(continues on next page)

16.2. Deep copy with manual attachment

127

OpenACC for GPU: an introduction

free (pop—>count) ;

free (pop->birth_rate);
free (pop—>death_rate) ;
free (pop) ;

void derivee (double* x,

{

Population*

#pragma acc serial present (pop,
ox[0:2], dx[0:2])

pop->birth_rate[0]*x[0]
—pop->death_rate[1]*x[1]

void rk4 (Population* pop,
{

double dt)

double* x_temp = (double¥*)

(
double* k1 = (double¥*)
double* k2 = (double*)
double* k3 = (double™)
double* k4 = (double¥*)
double halfdt = dt / 2.0;

pragma acc data create (k1[0:2],
pop—>birth_rate[0:2],

spresent (pop,
{

#pragma acc parallel loop
for (int i=0; 1i<2; i++)
x_temp[i] =

derivee (x_temp, pop, kl1);

#pragma acc parallel loop

for (int i=0; i<2; i++)
x_temp[i] =

derivee (x_temp, pop, k2);

#pragma acc parallel loop

for (int i=0; i<2; i++)
x_temp[i] =

derivee (x_temp, pop, k3);

#pragma acc parallel loop

for (int i=0; 1i<2; i++)
x_temp[i] =

derivee (x_temp, pop, k4);
#pragma acc parallel loop
for (int i=0; i<2; i++)

malloc (2*sizeof (double
malloc (2*sizeof (double
malloc
malloc (2*sizeof (double
malloc (2*sizeof (double

pop—>count [1] +

pop->count [i] +

pop—>count [i] +

(continued from previous page)

pop, double* dx)

pop->birth_rate[0:2],

- pop—>death_rate[0]*x[0]*x[1];
+ pop-—>birth_rate[l1]*x[0]*x[1];

()) i
()) i
(2*sizeof (double));
())i
())

’

’

k2[0:2], k3[0:2],
pop—>death_rate[0:2],

k4[0:2],

pop—>count [1];

k1[i]*halfdt;

k2[i]*halfdt;

k3[1i]*dt;

pop—>death_rate[0:2],.

x_temp[0:2])
pop—>count [0:2])

pop->count [i] = pop->count[i] + (dt/6.0)*(k1[i] + 2.0*k2[1] + 2.0*k3[1i] +_
k4 [i]);
}
}
(continues on next page)
128 Chapter 16. Deep copy

OpenACC for GPU: an introduction

(continued from previous page)

int main (void)

{

double ti = 0.00;

double dt = 0.05;

double tmax = 100.00;

Population *pred_prey = (Population *) malloc(sizeof (Population));
pred_prey->count = (double*) malloc(2*sizeof (double));
pred_prey->birth_rate = (double*) malloc (2*sizeof (double));
pred_prey->death_rate = (double*) malloc (2*sizeof (double));
pred_prey->count [1] = 15.00; // predator count
pred_prey—>birth_rate[l1] = 0.01; // predator birth rate
pred_prey->death_rate[1] = 1.0; // predator death rate
pred_prey->count [0] = 100.00; //prey count
pred_prey->birth_rate[0] = 2.00; // prey birth rate
pred_prey->death_rate[0] = 0.02; // prey death rate

#pragma acc enter data copyin(pred_prey->count[0:2], pred prey->birth_rate[0:2],.
spred_prey->death_rate[0:2])

#pragma acc enter data copyin(pred_prey) attach (pred_prey->count, pred_prey—>
sbirth_rate, pred_prey->death_rate)

FILE* fichier = fopen ("output_solution", "w");
while (ti < tmax)
{

ti += dt;

rk4 (pred_prey, dt);
for (int i=0; 1i<2; i++)
{
#pragma acc update self (pred_prey->count[i:1])
}
fprintf (fichier, "%1f %s 2I1f %s %1f\n", ti, ";", pred_prey->count[0], ";",_
spred_prey->count[1]);
}
fclose (fichier);
free_pop (pred_prey);
return O;

from matplotlib import pyplot as plt
import numpy as np

data = np.genfromtxt ("output_solution", delimiter="';")
time datal[:, 0]

preys = datal[:, 1]

predators = datal:, 2]

plt.plot (time, preys, color = 'blue')
plt.plot (time, predators, color = 'red'")

Requirements:

e Get started

16.2. Deep copy with manual attachment 129

OpenACC for GPU: an introduction

¢ Atomic operations

* Data Management

130 Chapter 16. Deep copy

CHAPTER
SEVENTEEN

USING CUDA LIBRARIES

OpenACC is interoperable with CUDA and GPU-accelerated libraries. It means that if you create some variables with
OpenACC you will be able to use the GPU (device) pointer to call a CUDA function.

17.1 acc host_data use_device

To call a CUDA function, the host needs to retrieve the address of your variable on the GPU. For example:

double* array = (double*) malloc(size*sizeof (double));
#pragma acc enter data create(array[:size])

#pragma acc host_data use_device (array)

{
// inside the block ‘array’ stores the address on the GPU
cuda_function (array);

17.2 Example with CURAND

The pseudo-random number generators of the standard libraries are not (as of 2021) available with OpenACC. One
solution is to use CURAND from NVIDIA.

In this example we generate a large array of random integer numbers in [0,9] with CURAND. Then a count of each
occurrence is performed on the GPU with OpenACC.

The implementation of the generation of the integers list is given but is beyond the scope of the training course.

$%idrrun -a —--options "-Mcudalib=curand"
// examples/C/Using_CUDA_random_example.c
#include <stdio.h>

#include <stdlib.h>

#include <curand.h>

#include <openacc.h>

// Fill d_buffer with num random numbers
void fill_rand(unsigned int *d_buffer, size_t num, cudaStream_t stream)
{

curandGenerator_t gen;

int status;

// Create generator

(continues on next page)

131

OpenACC for GPU: an introduction

(continued from previous page)

status = curandCreateGenerator (&gen, CURAND_RNG_PSEUDO_DEFAULT) ;

// Set CUDA stream

status |= curandSetStream(gen, stream);

// Set seed

status |= curandSetPseudoRandomGeneratorSeed (gen, 1234ULL);

// Generate num random numbers

status |= curandGenerate (gen, d_buffer, num);
// Peut essayer curandStatus_tcurandGeneratePoisson (curandGenerator_t generator, .
sunsigned int *outputPtr, size_t n, double lambda)

// Cleanup generator

status |= curandDestroyGenerator (gen);
if (status != CURAND_STATUS_SUCCESS) {
printf ("curand failure!\n");

exit (EXIT_FAILURE);

int main(void) {
// Histogram allocation and initialization
int histo[10];
for (int 1=0; 1<10; ++1i)
histo[i] = 0;

size_t nshots = (size_t) 1e9;
cudaStream_t stream ;

// Allocate memory for the random numbers

unsigned int* shots = (unsigned int*) malloc (nshots*sizeof (unsigned int));
#pragma acc data create (shots/[:nshots]) copyout (histo[:10])
{

#pragma acc host_data use_device (shots)

{
stream = (cudaStream_t) acc_get_cuda_stream(acc_async_sync);
fill_rand(shots, nshots, stream);

// Count the number of time each number was drawn
#pragma acc parallel loop present (shots|[:nshots])
for (size_t i=0; i<nshots; ++1)
{
shots[i] = shots[i] % 10;
#pragma acc atomic update
histo[shots[i]]++;
}
}// End acc data

// Print results
for (int i=0; 1i<10; ++1)

printf (" 2 (y\n", i, histo[i], (double) histo[i]/1.e9);

return 0;

Requirements:

¢ Get started

132 Chapter 17. Using CUDA libraries

OpenACC for GPU: an introduction

* Data Management

17.2. Example with CURAND 133

OpenACC for GPU: an introduction

134 Chapter 17. Using CUDA libraries

CHAPTER
EIGHTEEN

LOOP TILING

Nested loops often reuse the same data across their iterations and keeping the working set inside the caches can improve
performance. Tiling is a partitioning method of the loops into blocks. It reorders the loops so that each block will
repeatedly hit the cache. A first usage restriction will thus be on the loops’ nature itself: not all loops can benefit from
tiling, only the ones that will reuse data while showing a poor data locality, thus leading to frequent cache misses.

acc loop

acc loop tile(x,y)

N,/y

— _/

S
N, /X

OpenACC allows to improve data locality inside loops with the dedicated #ile clause. It specifies the compiler to split each
loop in the nest into 2 loops, with an outer set of tile loops and an inner set of element loops.

135

OpenACC for GPU: an introduction

18.1 Syntax

The tile clause may appear with the loop directive for nested loops. For N nested loops, the tile clause can take N
arguments. The first one being the size of the inner loop of the nest, the last one being the size of the outer loop.

#pragma acc loop tile(32,32)
for(int i = 0 ; i < size_i ; ++1i)
{
for(int j = 0 ; j < size_j ; ++3)
{
// A Fabulous calculation
}

18.2 Restrictions

« the tile size (corresponding to the product of the arguments of the tile clause) can be up to 1024
« for better performance the size for the inner loop is a power of 2 (best with 32 to fit a cuda warp)
« if the vector clause is specified, it is then applied to the element loop

« if the gang clause is specified, it is then applied to the tile loop

« the worker clause is applied to the element loop only if the vector clause is not specified

18.3 Example

In the following example, tiling is used to solve a matrix multiplication followed by an addition. Let us take a look at the
performance of the naive algorithm and the manual tiling on CPU.

$%idrrun

// examples/C/Loop_tiling_example_cpu.c
#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <time.h>

#define MIN(a,b) (((a)<(b))?(a):(b))

double double_random() {
return (double) (rand()) / RAND_MAX;
}

void nullify(int ni, int nj, double* d){
for (int i=0; i<ni; 1i++){
for (int j=0; j<nj; J++){
dlj+i*nj] 0.0;

}

double checksum(int ni, int nj, double* d){

(continues on next page)

136 Chapter 18. Loop tiling

OpenACC for GPU: an introduction

(continued from previous page)

double dsum = 0.0;
for (int i=0; i<ni; i++){
for (int j=0; j<nj; Jj++)A{
dsum = dsum + d[j+i*nj];

}

return dsum;

void naive_matmul (int ni, int nj, int nk, double* a, double* b, double* c, double* d) {
for (int i=0; i<ni; i++){
for (int j=0; j<nj; Jj++){
for (int k=0; k<nk; k++){
dli*n]j +3j] = d[i*nj +3] + alk+i*nk] * b[j+k*njl;
}
d[j+i*njl= d[j+i*nj] + c[j+i*nJ];

void tiled_matmul (int tile, int ni, int nj, int nk, double* a, double* b, double* c,.
wdouble* d) {
for (int i=0; i<ni; i+=tile) {
for (int j=0; j<nj; j+=tile){
for (int ii=i; 1i< MIN(i+tile,ni); ii++){
for (int jj=3j; JJI<MIN(j+tile,nj); Jj++){
for (int k=0; k<nk; k++){
dlii*nj +3jj] = d[ii*nj +33] + alk+ii*nk] * b[jj+k*ni];

}
for (int i=0; i<ni; 1i++){
for (int 3j=0; j<nj; J++){
d[j+i*nj]= d[j+i*n]j] + c[j+i*nj]l;

int main (void)
int ni=4280, nj=4024, nk=1960;

clock_t t1, t2;

’

double* a = (double*) malloc (ni*nk*sizeof (double));

double* b = (double*) malloc(nk*nj*sizeof (double));

double* ¢ = (double*) malloc(ni*nj*sizeof (double));
) ())

double* d = (double*
double test;

malloc(ni*nj*sizeof (double

unsigned int seed = 1234;
srand (seed) ;

(continues on next page)

18.3. Example 137

OpenACC for GPU: an introduction

for (int i=0; i<ni; i++){
for (int k=0; k<nk; k++){
alk+i*nk] = double_random() ;
}
}
for (int k=0; k<nk; k++){
for (int j=0; j<nj; J++){
b[j+k*nj] = double_random();
}
}
for (int i=0; i<ni; 1i++)H{
for (int 3j=0; j<nj; J++){
c[j+i*nj] = 2.0;
}
}
nullify(ni, nj, d);
tl = clock();
naive_matmul (ni, nj, nk, a, b, c, d);
t2 = clock();
test = checksum(ni, nj, d);
fprintf (stderr, "CPU naive Elapsed: \n", (double)
fprintf (stderr, "\tchecksum= \n\n", test);
nullify(ni, nj, d);
int tile = 512;
tl = clock();
tiled_matmul (tile, ni, nj, nk, a, b, c, d);
t2 = clock();
test = checksum(ni, nj, d);
fprintf (stderr, "CPU Manually tiled Elapsed: \n",
+PER_SEC) ;
fprintf (stderr, "\tchecsum= \n\n", test);
nullify(ni, nj, d);
free(a);
free (b);
free(c);
free(d);

return O;

And now it’s GPU implementation.

//
#include
#include
#include
#include

idrrun

#define MIN (a,b)

—a

examples/C/Loop_tiling_example_gpu.c

<stdio.h>
<stdint.h>
<stdlib.h>
<time.h>

(((a)<(b))?(a): (b))

(t2-t1)

(double)

(continued from previous page)

/CLOCKS_PER_SEC) ;

(t2-tl) /CLOCKS_

(continues on next page)

138

Chapter 18. Loop tiling

OpenACC for GPU: an introduction

(continued from previous page)

double double_random() {
return (double) (rand()) / RAND_MAX;

void nullify(int ni, int nj, double* d) {
for (int i=0; i<ni; 1i++)H{
for (int j=0; j<nj; J++){
d[j+i*nj] = 0.0;

double checksum(int ni, int nj, double* d){
double dsum = 0.0;
for (int 1i=0; i<ni; i++){
for (int j=0; j<nj; J++){
dsum = dsum + d[j+i*nj];

}

return dsum;

void naive_matmul (int ni, int nj, int nk, double* a, double* b, double* c, double* d) {

#pragma acc parallel loop default (present)
for (int i=0; i<ni; i++){
#pragma acc loop
for (int j=0; j<nj; J++){
for (int k=0; k<nk; k++){
d[i*n] +3] = d[i*nj +j] + alk+i*nk] * b[j+k*n]];

}

d[j+i*njl= d[j+i*nj] + c[j+i*nj];

void naive_matmul_acc_tiled(int ni, int nj, int nk, double* a, double* b, double* c,._
~double* d){
#pragma acc parallel loop tile(32,32) default (present)
for (int i=0; i<ni; i++){
for (int j=0; j<nj; Jj++){
for (int k=0; k<nk; k++){
dli*nj +3j] = d[i*nj +3] + alk+i*nk] * b[j+k*njl;

}

d[j+i*njl= d[Jj+i*nj] + c[j+i*n]j];

void tiled_matmul (int tile, int ni, int nj, int nk, double* a, double* b, double* c,.

~double* d){
#pragma acc parallel loop default (present) num_workers (8) vector_length (128)

#pragma acc loop gang collapse(2)
for (int i=0; i<ni; i+=tile) {
for (int j=0; j<nj; j+=tile){
(continues on next page)

18.3. Example 139

OpenACC for GPU: an introduction

int

#pragma acc loop worker

for (int ii=i;

ii< MIN(i+tile,ni); ii++){

#pragma acc loop vector

for (int jj=3j;

}

JIJ<MIN (j+tile,nij);

#pragma acc loop seq

for (int k=0; k<nk; k++){
d[ii*nj +3j] =

Ji++) 4

dlii*nj +33]

#pragma acc parallel loop default (present)

for (int i=0;

i<ni; i++){

#pragma acc loop

for

main (void)

int ni=4280,

clock_t t1,

double*
double*
double*
double* d =
double test;

Q O o
Il

unsigned int
srand (seed) ;
for (int i=0;
for

for (int k=0;

for

for (int i=0;

for

nullify(ni,

(int j=0;
dlj+i*

(double*)
(double*) malloc(nk*nj*sizeof (double
(double™)
(double™*)

(int k=0;
alk+i=*

(int j=0;
b[j+k*nj] =

(int j=0;
cl[j+i~

nj,

j<nj; j++){

njl= d[j+i*nj] + c[j+i*nJ];

nj=4024, nk=1960;

t2;

malloc (ni*nk*sizeof (double

(

(
malloc(ni*nj*sizeof (double
malloc(ni*nj*sizeof (double

seed = 1234;

i<ni; i++){
k<nk; k++){

nk] = double_random/() ;

k<nk; k++){
J++) A
double_random () ;

j<nj;

i++) {
J++) A

i<ni;
j<nj;

nj] = 2.0;

d) ;

)
)
)
)

)
)
)
)

+ al[k+ii*nk]

’
’

’

’

(continued from previous page)

* bljj+k*nil;

(continues on next page)

140

Chapter 18. Loop tiling

OpenACC for GPU: an introduction

(continued from previous page)

#pragma acc data copyin(a[0:ni*nk], b[0O:nk*nj], c[0:ni*nj]) create(d[0:ni*nj])

{

tl = clock();

naive_matmul (ni, nj, nk, a, b, c, d);
t2 = clock();

#pragma acc update self (d[0:ni*n7j])
test = checksum(ni, nj, d);

fprintf (stderr, "GPU naive Elapsed: %1f\n", (double)

fprintf (stderr, "\tchecksum=%1f\n\n", test);
nullify(ni, nj, d);
#pragma acc update device (d[0:ni*n7j])

tl = clock();

naive_matmul_acc_tiled(ni, nj, nk, a, b, c, d);
t2 = clock();

#pragma acc update self (d[0:ni*n7j])

test = checksum(ni, nj, d);
fprintf (stderr, "GPU OpenACC tiled Elapsed: ¢I1f\n",
<SEC) ;

fprintf (stderr, "\tchecksum=%1f\n\n", test);
nullify(ni, nj, d);
#pragma acc update device(d[0:ni*n7j])

int tile = 512;

tl = clock();

tiled_matmul (tile, ni, nj, nk, a, b, c, d);
t2 = clock();

#pragma acc update self (d[0:ni*n7j])

test = checksum(ni, nj, d);

fprintf (stderr, "GPU Manually tiled Elapsed: %1f\n",

+PER_SEC) ;
fprintf (stderr, "\tchecksum=%1f\n\n", test);

free(a);
free (b);
free(c);
free(d);

return O;

(t2-t1) /CLOCKS_PER_SEC) ;

(double) (t2-tl) /CLOCKS_PER_

(double) (t2-tl1) /CLOCKS_

18.3. Example

14

OpenACC for GPU: an introduction

18.4 Exercise

In this exercise, you will try to accelerate the numerical resolution of the 2D Laplace’s equation with tiles. You can see
that tiles parameter should be chosen wisely in order not to deteriorate performance.
%%sidrrun -a
// examples/C/Loop_tiling_exercise.c
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<openacc.h>

int main(void) {

int nx = 20000;
int ny = 10000;
int idx;

double T[nx*ny], T_new[nx*nyl];
double erreur;

for (int i=1; i<nx-1; ++i) {
for (int j=1; Jj<ny-1; ++3j) {

T[i*ny+]] = 0.0;
T_new[i*ny+j] = 0.0;
I3

for (int i=0; i<nx; ++i){
T[i*ny] = 100.0;
T[i*ny+tny-1] = 0.0;

for (int j=0; j<ny; ++3j)
T[]] =
T[(nx-1)*ny+j] = 0.0;

()
O~
~

// add acc directive
for (int it = 0; 1t<10000; ++it){
erreur = 0.0;
// add acc directive
for (int i=1; i<nx-1; ++i) {
for (int j=1; Jj<ny-1; ++3) {

idx = i*(ny)+J;
T_new[idx] = 0.25*(T[idx+ny]+T[idx—ny] + T[idx+1]+T[idx—-11]);
erreur = fmax (erreur, fabs(T_new[idx]-T[idx]));
I
}
if(it%100 == 0) fprintf(stderr,"it: , erreur: \n",it,erreur);

// add acc directive

for (int i=1; i<nx-1; ++i) {
for (int j=1; Jj<ny-1; ++3) {
T[i* (ny)+7J]

T_new[i* (ny)+3];

}

return 0;

(continues on next page)

142 Chapter 18. Loop tiling

OpenACC for GPU: an introduction

18.5 Solution

%$%idrrun -a

// examples/C/Loop_tiling_solution.c
#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<openacc.h>

int main(void) |

int nx = 20000;
int ny = 10000;
int idx;

double T[nx*ny], T_new[nx*ny];
double erreur;

for (int i=1; i<nx-1; ++i) {
for (int j=1; j<ny-1; ++3J) {
Tli*ny+]j] = 0.0;
T_new[i*ny+j] = 0.0;
}

for (int i=0; i<nx; ++i){
T[i*ny] = 100.0;
T[i*ny+ny-1] = 0.0;

for (int j=0; j<ny; ++3){
T[] = 0.0;
T[(nx-1) *ny+j] 0.0;

#pragma acc data copy (T) create (T_new)
{
for (int it = 0; it<10000; ++it){
erreur = 0.0;

#pragma acc parallel loop tile

for (int i=1; i<nx-1; ++i) {
for (int j=1; Jj<ny-1; ++3j)
idx = i* (ny)+7;

T_new[idx] = 0.25*(T[idx+ny]+T[idx-ny]

erreur = fmax (erreur,
}
}
if (it%100 == 0) fprintf (stderr,"it:

#pragma acc parallel loop
for (int i=1; i<nx-1; ++i) {
for (int j=1; Jj<ny-1; ++3j

)
T[i*(ny)+J] = T_new[i~*

(continued from previous page)

(32,32) reduction(max:erreur)

+ T[idx+1]+T[idx-1]);
fabs (T_new[idx]-T[idx]));

¢e\n", it,erreur);

(continues on next page)

18.5. Solution

143

OpenACC for GPU: an introduction

(continued from previous page)

Requirements:
* Get Started

* Data Management

144 Chapter 18. Loop tiling

CHAPTER
NINETEEN

HANDS-ON MD SIMULATION OF LENNARD-JONES SYSTEM

This hands-on simulate a Lennard Jones system with a Berendsen thermostat while the time integration is done using
velocity Verlet algorithm.

19.1 What to do

In this hands-on you will have to create the data structures to minimize the data transfers between CPU and GPU and
brings all the calculation on the accelerator.

If you are having difficulties with some part of the code, you can take a look at the following advice:

First you need to copy the configuration file.

%%bash
cp ../../examples/C/conf.dat

The hands-on starts here :

$%idrrun -a

// examples/C/Hands_on_LJ_exercise.c
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

include <math.h>

#include <float.h>

// Mass of the atoms (only 1 kind and normalized)
const double mass = 1.0;

// Boltzmann constant

const double kb = 0.831451115;

typedef struct
{
size_t size;
double* data;
} array;

typedef struct
{
array* Fx;
array* Fy;
array* Fz;
} Forces;

(continues on next page)

145

OpenACC for GPU: an introduction

(continued from previous page)

typedef struct

{
array* vx;
array* vy;
array* vz;
array* x;
array* vy;
array* z;

} dynamic;

typedef struct
{
size_t nsteps; // number of steps
size_t dump_dyn; // number of steps between dumps
char dump_file[20]; // number of steps between dumps
double dt; // time step
double lattice_length; // length of the box
double Berendsen_T; // Temperature of the thermostat
double Berendsen_coupling; // Temperature of the thermostat
size_t NAtoms; // Number of atoms
double LJ_sigma; // sigma parameter of the Lennard-Jones potential
double LJ_epsilon; // epsilon parameter of the Lennard-Jones potential
double LJ_cutoff; // cutoff of the Lennard-Jones potential
double LJ_tolerance; // cutoff of the Lennard-Jones potential
} Config;

/**
* Management of the dynamic struct
=
dynamic* initialize_dyn(Config* conf, int random); //done
void free_dyn (dynamic* dyn); //done
array* allocate_array(size_t size); //done
void free_array(array* ar); //done

/**
* Dynamic
LY/
void velocity_verlet (dynamic* dyn, Forces* forces, Config* conf); //done
double LJ_pot (double rij2, double sigma2, double epsilon2);// done
void forces_from_LJ(dynamic* dyn, Forces* forces, Config* conf); //done
double berendsen_thermostat (dynamic* dyn, Config*);
void sd(dynamic* dyn,
Forces* forces,
Config* conf,
double step_length,
double threshold,
size_t max_steps);
double stat_forces (Forces* forces, Config* conf);

#pragma acc routine seqg
inline double LJ_pot (double rij2, double sigma2, double epsilon)

{
return epsilon * pow((2.0 * (sigma2/rij2)), 6) - pow((2.0 * (sigma2/rij2)), 3);

(continues on next page)

146 Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

void forces_from_LJ(dynamic* dyn, F

{

double sigma2 conf->LJ_sigma*
double rij2, yij, zij 0.
double potential_energy=0.0;

%13,

(continued from previous page)

orces* forces, Config* conf)

conf->LJ_sigma;
0;

for (size_t 1=0; i<conf->NAtoms; ++1)
{
forces->Fx->datal[i] = 0.;
forces->Fy->datal[i] = 0.;
forces—>Fz—->datal[i] = 0.;
}
for (size_t 1i=0; i<conf->NAtoms; ++1i)
for (size_t j=0; j<conf->NAtoms; ++7)
{
xij = (dyn->x->datal[j] - dyn->x->datali]);
yij = (dyn->y->datal[j] - dyn->y->datalil);
zij = (dyn->z->data[j] - dyn->z->datal[i]);
// Apply Periodic Boundary Conditions
xi1j —-= floor(xij/conf->lattice_length + 0.5) *conf->lattice_length;
yij —= floor(yij/conf->lattice_length + 0.5) *conf->lattice_length;
zij —= floor(zij/conf->lattice_length + 0.5) *conf->lattice_length;
rij2 = xij*xij + yij*yij + zij*zij;
if ((rij2 > conf->LJ_tolerance) && (rij2 < conf->LJ_cutoff * conf->LJ_
wcutoff))

potential_energy +=
forces—>Fx—>datal[i]

~epsilon) *xij/sqrt (rij2);
forces—>Fy->datal[i]

wepsilon) *yij/sqrt (rij2);
forces—>Fz->datal[i]

—epsilon) *zij/sqrt (rij2);
forces—>Fx->datalj]

~epsilon) *xij/sqrt (rij2);
forces—>Fy->datalj]

wepsilon) *yij/sqrt (rij2);
forces—>Fz->datalj]

—epsilon) *zij/sqrt (rij2);

}
}

printf ("Epot=

n
’

potenti

double stat_forces (Forces* forces,

{

double Fmax = 0.;

double Fmin = DBL_MAX;

double Fnorm = 0.;

double F = 0.;

for (int i =0; i< conf->NAtoms;

{

F forces—>Fx—>data[i] *for

LJ_pot(rij2, sigma2, conf->LJ_epsilon);
+= 24.0*LJ_pot(rij2, sigma2, conf->LJ_
+= 24.0*LJ_pot (rij2, sigma2, conf->LJ_
+= 24.0*LJ_pot (rij2, sigma2, conf->LJ_
-= 24 .0*LJ_pot(rij2, sigma2, conf->LJ_
-= 24.0*LJ_pot (rij2, sigma2, conf->LJ_
—-= 24.0*LJ_pot(rij2, sigma2, conf->LJ_

al_enerqgy);

Config* conf)

++1)

ces—>Fx—>data[i]+

(continues on next page)

19.1. What to do

147

OpenACC for GPU: an introduction

(continued from previous page)

forces->Fy->data[i] *forces—>Fy->data[i]+
forces->Fz->datal[i] *forces->Fz->datal[i];
if (F < Fmin) Fmin = F;
if (F > Fmax) Fmax = F;
Fnorm += F;
}
printf ("<EF>= min (F)= max (F) = ", sqrt (Fnorm) /conf->NAtoms, .

wsqgrt (Fmin), sqgrt (Fmax));
return sqgrt (Fnorm) /conf->NAtoms;

void velocity_verlet (dynamic* dyn, Forces* forces, Config* conf)

{

for (size_t 1i=0; i < conf->NAtoms; ++1i)

{

dyn->vx->data[i] += 0.5 * conf->dt * forces->Fx->datal[i];

dyn->vy->datal[i] += 0.5 * conf->dt * forces->Fy->datalil];

dyn->vz->data[i] += 0.5 * conf->dt * forces->Fz->datal[i];

dyn->x->datal[i] += conf->dt*dyn->vx->datali];

dyn->y->datal[i] += conf->dt*dyn->vy->datali];

dyn->z->data[i] += conf->dt*dyn->vz->datal[i];

// Apply the Periodic Boundary Conditions

dyn->x->data[i] -= floor (dyn->x->data[i]/conf->lattice_length + 0.5) * conf->
~lattice_length;

dyn->y->datal[i] -= floor (dyn->y->data[i]/conf->lattice_length + 0.5) * conf->
<lattice_length;

dyn->z->data[i] -= floor (dyn->z->data[i]/conf->lattice_length + 0.5) * conf->

~lattice_length;
}

forces_from_LJ (dyn, forces, conf);

for (size_t i=0; i < conf->NAtoms; ++1i)

{
dyn->vx->datal[i] += 0.5 * conf->dt * forces->Fx->datalil];
dyn->vy->data[i] += 0.5 * conf->dt * forces->Fy->datal[i];
dyn->vz->data[i] += 0.5 * conf->dt * forces->Fz->datal[i];
}
}
/**
* Read/write configuration
%/

Config* read_params (char* filepath); //done
void read_initial (char* filepath, dynamic* dyn);
void write_step (char* filepath, dynamic* dyn);

void free_array(array* ar)
{

free (ar—->data);

free (ar);

(continues on next page)

148 Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

array* allocate_array(size_t size)

{

array* ar = (array*) malloc(sizeof (array));
ar—->size = size;
ar—->data = (double*) malloc (size*sizeof (double));

return ar;

void free_forces (Forces* forces)
{
free_array (forces—>Fx);
free_array (forces—->Fy);
free_array (forces—>Fz);

free (forces);

void free_dyn (dynamic* dyn)

{
free_array (dyn—->x);
free_array (dyn->y);
free_array(dyn—->z);
free_array (dyn—->vx) ;
free_array (dyn->vy);
free_array (dyn->vz);

free (dyn);

void update_array(array* ar,

{

size_t size, int gpu)

if (gpu)

void update_dyn (dynamic*

{

dyn, Config* conf, int gpu)

update_array (dyn—->x,
update_array (dyn—>y,
update_array (dyn—->z,

update_array (dyn—>vx,
update_array (dyn->vy,
update_array (dyn—>vz,

/**

conf->NAtoms,
conf->NAtoms,
conf->NAtoms,

)
)
)
conf->NAtoms, gpu
u

conf->NAtoms, gp
conf->NAtoms,

)
)i
)

* Initialize the structures for the dynamic
* If random is >0 we generate a grid on which we place the atoms

*/

(continued from previous page)

(continues on next page)

19.1. What to do

149

OpenACC for GPU: an introduction

(continued from previous page)

dynamic* initialize_dyn(Config* conf, int random)

{

size_t id = 0;

size_t n = floor (pow(conf->NAtoms,1./3.))+1;

size_t leftover = conf->NAtoms - n*n*n;

printf (" \n", leftover, leftover/n/n, leftover%(n*n));
double s = conf->lattice_length/ (double) n;

dynamic* dyn = (dynamic*) malloc(sizeof (dynamic)) ;

dyn->x = allocate_array (conf->NAtoms) ;

dyn—->y = allocate_array (conf->NAtoms) ;

dyn->z = allocate_array (conf->NAtoms) ;

dyn->vx = allocate_array (conf->NAtoms) ;
dyn->vy = allocate_array (conf->NAtoms) ;

dyn->vz = allocate_array (conf->NAtoms) ;
if (random > 0)
{

srand(47329) ;

for (size_t i=0; i<n; ++1i)

{
for (size_t j=0; j<n; ++3J)
{

for (size_t k=0; k<n; ++k)

{
id = i*n*n + j*n + k;
if (id >= conf->NAtoms) break;
dyn->x->data[id] = s* ((double)i + 0.5) + (double)rand()/RAND_MAX..
=% 0,388
dyn->y->data[id] = s* ((double)j + 0.5) + (double)rand()/RAND_MAX..

=% 0,388

dyn->z->datal[id] s* ((double)k + 0.5) + (double)rand()/RAND_MAX..

=* 0.3*s;

dyn->vx->datal[id] = 0.;// (double)rand() /RAND_MAX * 5.0 - 2.5;
dyn->vy->data[id] = 0.;//(double)rand() /RAND_MAX * 5.0 — 2.5;
dyn->vz->data[id] = 0.;//(double)rand() /RAND_MAX * 5.0 - 2.5;
}
if (id >= conf->NAtoms) break;
I3
if (id >= conf->NAtoms) break;
}
// Apply PBC
for (int i=0; i<conf->NAtoms; ++i)
{
dyn->x->data[i] -= floor (dyn—->x->datal[i]/conf->lattice_length + 0.5) *_
,conf->lattice_length;
dyn->y->datal[i] -= floor (dyn->y->datali]/conf->lattice_length + 0.5) *._
wconf->lattice_length;
dyn->z->data[i] -= floor(dyn->z->data[i]/conf->lattice_length + 0.5) *_
wconf->lattice_length;
I3
}
int gpu=1;

update_dyn (dyn, conf, gpu);
return dyn;

(continues on next page)

150 Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

/**
* Initialize Forces

*/

Forces* initialize_forces (Config* conf)

{

Forces* forces =

forces—>Fx = allocate_array(conf-
forces—>Fy = allocate_array (conf—
forces—>Fz = allocate_array (conf—

for (size_t 1i=0; i<conf->NAtoms;
{
forces->Fx->datal[i] = 0.;
forces—>Fy->datalil]

forces—>Fz->datali]

([l
o o
~ 0~

}

return forces;

/**
* Read the configuration
=
Config* read_params (char* filepath)
{
FILE* fp = fopen(filepath,
char* line = NULL;
size_t len = 0;
char key[20], val([20];

"I");

Config* conf =
if (fp == NULL)
exit (EXIT_FAILURE) ;

(Forces”*) malloc(sizeof (Forces));

>NAtoms) ;
>NAtoms) ;
>NAtoms) ;

++1)

(Config*) malloc(sizeof (Configqg));

while ((getline(&line, &len, fp)) != -1)
{
sscanf (line, " ", key, val);
if (strcmp(key, "T") == 0)
{
conf->Berendsen_T = atof (val);
} else if (strcmp(key, "nsteps") == 0){
conf->nsteps = atoi(val);
} else if (strcmp(key, "dump_dyn") == 0){
conf->dump_dyn = atoi(val);
} else if (strcmp(key, "dump_file") == 0){
strcpy (conf->dump_file, val);
} else if (strcmp(key, "dt") == 0){
conf->dt = atof(val);
} else if (strcmp(key, "tau") == 0){

conf->Berendsen_coupling
} else if (strcmp (key,

= atof (val);

"lattice") == 0){

conf->lattice_length = atof (val);

} else if (strcmp(key, "LJ_sigma") == 0){
conf->LJ_sigma = atof (val);
} else if (strcmp(key, "LJ epsilon") == 0){

(continued from previous page)

(continues on next page)

19.1. What to do

151

OpenACC for GPU: an introduction

(continued from previous page)

conf->LJ_epsilon = atof(val);

} else if (strcmp(key, "LJ_cutoff") == 0){
conf->LJ_cutoff = atof (val);

} else if (strcmp(key, "LJ_tolerance") == 0){
conf->LJ_tolerance = atof (val);

} else if (strcmp(key, "natoms") == 0){

conf->NAtoms atoi(val);

}
fclose (fp);

return conf;

void print_conf (Config* conf)

{

printf ("LJ_epsilon \n", conf->LJ_epsilon);
printf ("LJ_cutoff \n", conf->LJ_cutoff);

printf ("natoms \n", conf->NAtoms) ;
printf ("dt \n", conf->dt);
printf ("nsteps \n", conf->nsteps);
printf ("tau \n", conf->Berendsen_coupling);
printf("T \n", conf->Berendsen_T);
printf ("lattice \n", conf->lattice_length);
printf ("LJ_sigma \n", conf->LJ_sigma);
(
(

void dump_dyn (dynamic* dyn, Config* conf, char* mode)

{
FILE* fp = fopen(conf->dump_file, mode);
fprintf (fp, "%d\n", conf->NAtoms) ;
fprintf (fp, " \n", conf->lattice_length);
for (int i1=0; i<conf->NAtoms; ++i)
{
fprintf (fp, "Ne \n",

dyn->x->datal[i], dyn->y->data[i], dyn->z->datali],
dyn->vx->datal[i], dyn->vy->data[i], dyn->vz->datalil);
}
fclose (fp);

double berendsen_thermostat (dynamic* dyn, Config* conf)
{
double kinetic_E = 0.0;

for (size_t 1=0; i<conf->NAtoms; ++1i)
kinetic_E += 1.0 * (dyn->vx->datal[i]*dyn->vx->datal[il])
+ (dyn->vy->data[i] *dyn->vy->datali])
+ (dyn->vz->data[i] *dyn->vz->datali]);

kinetic_E *= 0.5;

double T = 2.0 * kb * kinetic_E/ (3.0 * conf->NAtoms -3);

double lambda_scaling = sqrt (1l + (conf->dt/conf->Berendsen_coupling) * (conf->
,Berendsen_T/T-1));

printf ("T= 1= ", T, lambda_scaling);

(continues on next page)

152 Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

(continued from previous page)

for (size_t i=0; i < conf->NAtoms; ++1)
{
dyn->vx->data[i] *= lambda_scaling;
dyn->vy->data[i] *= lambda_scaling;
dyn->vz->datal[i] *= lambda_scaling;

return T;

int main(int argc, char** argv)

{

double T;

int cpu=0;

Config* conf = read_params ("conf.dat");
dynamic* dyn = initialize_dyn(conf, 1);
Forces* forces = initialize_forces (conf);

forces_from_LJ(dyn, forces, conf);
dump_dyn (dyn, conf, "w"

// sd(dyn, forces, conf, 0.0001, 0.0001, 2000);
for (int i1=0; i<conf->nsteps; ++1i)
{
printf ("Step ",1);

velocity_verlet (dyn, forces, conf);

stat_forces (forces, conf);

T = berendsen_thermostat (dyn, conf);

if (1 > 100 && T > conf->Berendsen_T*1000)

{
fprintf (stderr, "Oups something went wrong with T\n");
break;

update_dyn (dyn, conf, cpu);
dump_dyn (dyn, conf, "a");
}
printf ("\n");
}
update_dyn (dyn, conf, cpu);
dump_dyn (dyn, conf, "a");
free_dyn (dyn) ;
free_forces (forces);
return O;

19.1. What to do 153

OpenACC for GPU: an introduction

19.2 Solution

$%idrrun -a

// examples/C/Hands_on_LJ_solution.c
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

include <math.h>

#include <float.h>

// Mass of the atoms (only 1 kind and normalized)
const double mass = 1.0;

// Boltzmann constant

const double kb = 0.831451115;

typedef struct
{
size_t size;
double* data;
} array;

typedef struct
{
array* Fx;
array* Fy;
array* Fz;
} Forces;

typedef struct

{
array* vx;
array* vy;
array* vz;
array”* x;
array* y;
array* z;

} dynamic;

typedef struct
{
size_t nsteps; // number of steps
size_t dump_dyn; // number of steps between dumps
char dump_file[20]; // number of steps between dumps
double dt; // time step
double lattice_length; // length of the box
double Berendsen_T; // Temperature of the thermostat
double Berendsen_coupling; // Temperature of the thermostat
size_t NAtoms; // Number of atoms
double LJ_sigma; // sigma parameter of the Lennard-Jones potential
double LJ_epsilon; // epsilon parameter of the Lennard-Jones potential
double LJ_cutoff; // cutoff of the Lennard-Jones potential
double LJ_tolerance; // cutoff of the Lennard-Jones potential
} Config;

/**
* Management of the dynamic struct
*/

(continues on next page)

154 Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

(continued from previous page)

dynamic* initialize_dyn(Config* conf, int random); //done
void free_dyn (dynamic* dyn); //done

array* allocate_array(size_t size); //done

void free_array(array* ar); //done

/**
* Dynamic
=Y
void velocity_verlet (dynamic* dyn, Forces* forces, Config* conf); //done
double LJ_pot (double rij2, double sigma2, double epsilon2);// done
void forces_from_LJ(dynamic* dyn, Forces* forces, Config* conf); //done
double berendsen_thermostat (dynamic* dyn, Config”*);
void sd(dynamic* dyn,
Forces* forces,
Config* conf,
double step_length,
double threshold,
size_t max_steps);
double stat_forces (Forces* forces, Config* conf);

#pragma acc routine seq
inline double LJ_pot (double rij2, double sigma2, double epsilon)
{
return epsilon * pow((2.0 * (sigma2/rij2)), 6) — pow((2.0 * (sigma2/rij2)), 3);

void forces_from_LJ(dynamic* dyn, Forces* forces, Config* conf)
{

double sigma2 = conf->LJ_sigma*conf->LJ_sigma;

double rij2, xij, yij, zij = 0.0;

double potential_energy=0.0;

#pragma acc parallel loop present (forces, dyn, conf)\
present (forces->Fx, forces->Fx->data[:conf->NAtoms]) \
present (forces->Fy, forces->Fy->data[:conf->NAtoms]) \
present (forces—>Fz, forces—>Fz—>data[:conf->NAtoms])
for (size_t 1=0; i<conf->NAtoms; ++1i)

{
forces->Fx->datal[i] = 0.;
forces—->Fy->datal[i] = 0.;
forces->Fz->datal[i] = 0.;

#pragma acc parallel loop present (forces, dyn, conf)\
copy (potential_energy) reduction (+:potential_energy)\
present (forces->Fx, forces->Fx->data[:conf->NAtoms]) \
present (forces->Fy, forces->Fy->data[:conf->NAtoms]) \
present (forces->Fz, forces—->Fz->data[:conf->NAtoms]) \
present (dyn->x,dyn->x->data[:conf->NAtoms]) \
present (dyn->y,dyn->y->data[:conf->NAtoms]) \
present (dyn—->z,dyn—->z—>data[:conf->NAtoms])
for (size_t 1i=0; i<conf->NAtoms; ++1i)
#pragma acc loop private(xij, yij, zij, rij2)
for (size_t j=0; j<conf->NAtoms; ++7)
{
xij = (dyn->x->datal[]j] - dyn->x->datalil);

(continues on next page)

19.2. Solution 155

OpenACC for GPU: an introduction

vyij (dyn->y->data[j] - dyn->y->datali]);
zij = (dyn->z->datal[j] - dyn->z->datali]);
// RApply Periodic Boundary Conditions

x1ij —= floor(xij/conf->lattice_length + 0.5)
yij —= floor(yij/conf->lattice_length + 0.5)
zij —= floor(zij/conf->lattice_length + 0.5)
rij2 = xij*xij + yij*yij + zij*zij;

if ((rij2 > conf->LJ_tolerance) &&

scutoff))

potential_energy +=
forces—>Fx—->datal[i]
—epsilon) *xij/sqrt (rij2);

LJ_pot (rijz,

sigma2z,

+= 24.0*LJ_pot (rij2,

forces—>Fy->datal[i] += 24.0*LJ_pot (rij2,
wepsilon) *yij/sqgrt (rij2);

forces—>Fz->datal[i] += 24.0*LJ_pot(rij2,
wepsilon) *zij/sqrt(rij2);

forces—>Fx->datal[j] —= 24.0*LJ_pot (rij2,
—epsilon) *xij/sqrt (rij2);

forces—>Fy->datal[j] —-= 24.0*LJ_pot(rij2,
wepsilon) *yij/sqrt (rij2);

forces—>Fz->datal[j] -= 24.0*LJ_pot(rij2,
wepsilon) *zij/sqrt(rij2);

}
}
printf ("Epot= ", potential_energy);

double stat_forces (Forces* forces,
{

double Fmax = 0.;

double Fmin = DBL_MAX;

double Fnorm = 0.;

double F = 0.;

Config* conf)

(continued from previous page)

*conf->lattice_length;
*conf->lattice_length;
*conf->lattice_length;

(rij2 < conf->LJ_cutoff * conf->LJ_

conf->LJ_epsilon);
sigma2, conf->LJ_
sigma2, conf->LJ_
sigma2, conf->LJ_
sigmaz2, conf->LJ_
sigma2, conf->LJ_

sigma2, conf->LJ_

#pragma acc parallel loop reduction(min:Fmin) reduction (max:Fmax).

sreduction (+:Fnorm) \

private (F)

present
present

(
(
(
(

forces,

copy (Fmin,

Fmax,
forces->Fx,
forces—>Fx—>data[:forces—>Fx—>size])\

Fnorm) \

forces->Fy, forces->Fz)\

present (forces->Fy->datal[:forces->Fy->size])\
present (forces->Fz->datal[:forces->Fz->size])
AFaral)

for (int i =0; i< conf->NAtoms;
{
F = forces->Fx—->datal
forces—>Fy—>data|
if (F < Fmin) Fmin = F;
if (F > Fmax) Fmax = F;

Fnorm += F;
}
printf ("<F>=
ssqrt (Fmin), sqgrt (Fmax));
return sqrt (Fnorm) /conf->NAtoms;

min (F)=

i]*forces->Fx->data[i]+
i]*forces->Fy->datali]+
forces->Fz->datal[i] *forces—->Fz->datal[i];
F
F

max (F) = ’

sgrt (Fnorm) /conf->NAtoms, _

(continues on next page)

156

Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

(continued from previous page)

void velocity_verlet (dynamic* dyn, Forces* forces, Config* conf)
{

#pragma acc parallel loop present (conf, dyn, forces, dyn->vx, dyn->vx->datal[:conf-
«>NAtoms]) \
present (dyn->vy,dyn->vy->data[:conf->NAtoms]) \
present (dyn->vz,dyn->vz->data[:conf->NAtoms]) \
present (dyn->x,dyn->x->data[:conf->NAtoms]) \
present (dyn->y,dyn->y->data[:conf->NAtoms]) \
present (dyn->z,dyn->z->data[:conf->NAtoms]) \
present (forces->Fx, forces->Fx->data[:conf->NAtoms]) \
present (forces->Fy, forces->Fy->data[:conf->NAtoms]) \

(

present (forces->Fz, forces->Fz->data[:conf->NAtoms])
for (size_t 1i=0; i < conf->NAtoms; ++1i)
{
dyn->vx->data[i] += 0.5 * conf->dt * forces->Fx->datal[i];
dyn->vy->datal[i] += 0.5 * conf->dt * forces->Fy->datali];
dyn->vz->data[i] += 0.5 * conf->dt * forces->Fz->datal[i];
dyn->x->datal[i] += conf->dt*dyn->vx->datali];
dyn->y->datal[i] += conf->dt*dyn->vy->datali];
dyn->z->data[i] += conf->dt*dyn->vz->datal[i];
// Apply the Periodic Boundary Conditions
dyn->x->data[i] -= floor (dyn->x->data[i]/conf->lattice_length + 0.5) * conf->
~lattice_length;
dyn->y->datal[i] -= floor (dyn->y->data[i]/conf->lattice_length + 0.5) * conf->
<lattice_length;
dyn->z->data[i] -= floor (dyn->z->data[i]/conf->lattice_length + 0.5) * conf->

~lattice_length;
}

forces_from_LJ (dyn, forces, conf);

#pragma acc parallel loop present (conf, forces, dyn)\
present (dyn->vx,dyn->vx—->data[:conf->NAtoms]) \
present (dyn->vy,dyn->vy->data[:conf->NAtoms]) \
present (dyn->vz,dyn->vz->datal[:conf->NAtoms]) \
present (forces->Fx, forces->Fx->data[:conf->NAtoms]) \
present (forces->Fy, forces->Fy->data[:conf->NAtoms]) \
present (forces—>Fz, forces—>Fz—>data[:conf->NAtoms])

for (size_t i=0; i1 < conf->NAtoms; ++1i)

{

dyn->vx->data[i] += 0.5 * conf->dt * forces->Fx->datal[i];
dyn->vy->datal[i] += 0.5 * conf->dt * forces->Fy->datali];
dyn->vz->datal[i] += 0.5 * conf->dt * forces->Fz->datali];

/**

* Read/write configuration

=/
Config* read_params (char* filepath); //done
void read_initial (char* filepath, dynamic* dyn);
void write_step (char* filepath, dynamic* dyn);

(continues on next page)

19.2. Solution 157

OpenACC for GPU: an introduction

void free_array(array* ar)

{

free (ar—>data) ;
free(ar);

array* allocate_array(size_t size)

{

array* ar = (array*) malloc(sizeof (array));
ar—->size = size;
ar—->data = (double*) malloc(size*sizeof (double));

(continued from previous page)

#pragma acc enter data create(ar, ar—->data[:size]) copyin(ar->size)

return ar;

void free_forces (Forces* forces)

{

free_array (forces—>Fx);

free_array (forces—>Fy);

free_array (forces—>Fz);

#pragma acc exit data delete (forces)
free (forces);

void free_dyn (dynamic* dyn)

{

{

free_array (dyn—->x);

free_array (dyn—->y);
free_array(dyn—->z);

free_array (dyn->vx);

free_array (dyn—->vy) ;

free_array (dyn->vz);

#pragma acc exit data delete (dyn)
free (dyn);

int gpu)

void update_array(array* ar, size_t size,
if (gpu)
{
#pragma acc update device (ar->datal[:size])
}
else
{

#pragma acc update self (ar->data[:size])

void update_dyn (dynamic* dyn, Config* conf,

{

update_array (dyn->x, conf->NAtoms, gpu
update_array (dyn->y, conf->NAtoms, gpu
update_array (dyn->z, conf->NAtoms, gpu
update_array (dyn->vx, conf->NAtoms, gp
update_array (dyn->vy, conf->NAtoms, gp

int gpu)

(continues on next page)

158

Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

(continued from previous page)

update_array (dyn->vz, conf->NAtoms, gpu);

/~k~k
* Initialize the structures for the dynamic
* If random is >0 we generate a grid on which we place the atoms
=/

dynamic* initialize_dyn (Config* conf, int random)

{

size_t id = 0;

size_t n = floor (pow(conf->NAtoms,1./3.))+1;

size_t leftover = conf->NAtoms - n*n*n;

printf (" \n", leftover, leftover/n/n, leftover%(n*n));
double s = conf->lattice_length/ (double) n;

dynamic* dyn = (dynamic*) malloc (sizeof (dynamic));

#pragma acc enter data create (dyn)

dyn->x = allocate_array (conf->NAtoms) ;
dyn->y = allocate_array (conf->NAtoms) ;
dyn->z = allocate_array (conf->NAtoms) ;

dyn->vx = allocate_array (conf->NAtoms) ;

dyn->vy = allocate_array (conf->NAtoms) ;
dyn->vz = allocate_array (conf->NAtoms) ;
if (random > 0)

{

srand(47329) ;
for (size_t i=0; i<n; ++i)
{
for (size_t j=0; j<n; ++3j)
{
for (size_t k=0; k<n; ++k)
{
lel = d¥*m*m <+ J¥m F kg
if (id >= conf->NAtoms) break;

dyn->x->data[id] = s*((double)i + 0.5) + (double)rand()/RAND_MAX..
=% 0,3%3g
dyn->y->data[id] = s* ((double)j + 0.5) + (double)rand()/RAND_MAX..
=% 0,388
dyn->z->data[id] = s* ((double)k + 0.5) + (double)rand()/RAND_MAX..
=¥ 0,388
dyn->vx—->data[id] = 0.;//(double)rand() /RAND_MAX * 5.0 — 2.5;
dyn->vy->data[id] = 0.;//(double)rand() /RAND_MAX * 5.0 - 2.5;
dyn->vz->data[id] = 0.;//(double)rand() /RAND_MAX * 5.0 — 2.5;
}
if (id >= conf->NAtoms) break;
}
if (id >= conf->NAtoms) break;
I3
// Apply PBC
for (int i=0; i<conf->NAtoms; ++1i)
{
dyn->x->data[i] -= floor (dyn->x->data[i]/conf->lattice_length + 0.5) *_
sconf->lattice_length;
dyn->y->data[i] -= floor (dyn->y->data[i]/conf->lattice_length + 0.5) *._
s,conf->lattice_length;
dyn->z->data[i] -= floor (dyn—->z->data[i]/conf->lattice_length + 0.5) *_

sconf->lattice_length;

(continues on next page)

19.2. Solution 159

OpenACC for GPU: an introduction

(continued from previous page)

int gpu=1;
update_dyn (dyn,
return dyn;

conf, gpu);

/**
* Initialize Forces
%Y
Forces* initialize_forces (Config* conf)

{

Forces* forces = (Forces*) malloc (sizeof (Forces));
#pragma acc enter data create (forces)
forces—>Fx = allocate_array (conf->NAtoms) ;
forces—>Fy = allocate_array (conf->NAtoms) ;
forces—>Fz = allocate_array (conf->NAtoms) ;
#pragma acc parallel loop present (forces,

< forces—->Fx->datal[:conf->NAtoms]) \

conf, forces->Fx,

present (forces->Fy->datal[:conf->NAtoms]) \

present (forces->Fz->data[:conf->NAtoms])

for (size_t i=0; i<conf->NAtoms; ++1i)
{
forces—>Fx—>data[i] = 0.;
forces->Fy->datal[i] = 0.;
forces->Fz->datal[i] = 0.;

}

return forces;

/**
* Read the configuration
*/
Config* read_params (char* filepath)
{
FILE* fp = fopen(filepath, "r");
char* line = NULL;
size_t len = 0;
char key[20], val[20];
Config* conf = (Config*) malloc(sizeof (Confiqg));
if (fp == NULL)
exit (EXIT_FAILURE) ;

while ((getline(&line, &len, fp)) != -1)
{
sscanf (line, " ", key, wval);
if (strcmp(key, "T") == 0)
{
conf->Berendsen_T = atof (val);
} else if (strcmp(key, "nsteps") == 0){
conf->nsteps = atoi(val);
} else if (strcmp(key, "dump_dyn") == 0){
conf->dump_dyn = atoi(val);
} else if (strcmp(key, "dump_file") == 0){

forces—->Fy,

forces->Fz,

(continues on next page)

160

Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

strcpy (conf->dump_file, wval

)i

} else if (strcmp(key, "dt") == 0){
conf->dt = atof(val);

} else if (strcmp(key, "tau") == 0){
conf->Berendsen_coupling = atof (val);

} else if (strcmp(key, "lattice") == 0){
conf->lattice_length = atof (val);

} else if (strcmp(key, "LJ _sigma") == 0){
conf->LJ_sigma = atof (val);

} else if (strcmp(key, "LJ_epsilon") == 0){
conf->LJ_epsilon = atof (val);

} else if (strcmp(key, "LJ_cutoff") == 0){
conf->LJ_cutoff = atof (val);

} else if (strcmp(key, "LJ_tolerance") == 0) {
conf->LJ_tolerance = atof (val);

} else if (strcmp(key, "natoms") == 0){

conf->NAtoms = atoi(val);

}

fclose (fp);

#pragma acc enter data copyin(conf)
return conf;

void print_conf (Config* conf)

{

-
s£\n",

conf->LJ_epsilon);
conf->LJ_cutoff);

printf ("LJ_epsilon
printf ("LJ_cutoff

printf ("natoms 2%d\n", conf->NAtoms);
printf ("dt $r\n", conf->dt);
printf ("nsteps %d\n", conf->nsteps);
printf ("tau ¢r\n", conf->Berendsen_coupling);
printf ("T ¢7\n", conf->Berendsen_T);
printf ("lattice ¢7\n", conf->lattice_length);
printf ("LJ_sigma %f\n", conf->LJ_sigma);
(
(

void dump_dyn (dynamic* dyn, char* mode)

{

Config* conf,

FILE* fp =
fprintf (fp, "%

fopen (conf->dump_file, mode);

J\n", conf->NAtoms) ;

fprintf (fp, "%10.57\n", conf->lattice_length);
for (int i1=0; i<conf->NAtoms; ++1i)
{

[

"Ne %15.10f %15.10f 15. 15
dyn—->y->dat
dyn->vy->datali],

fprintf (fp,
dyn->x->datali],
dyn->vx->datal[i],

}
fclose (fp);

double berendsen_thermostat (dynamic* dyn,
{

double kinetic_E = 0.0;

(continued from previous page)

15 Qe gi‘:.;‘\\\nu,

[i], dyn->z->datali],
dyn->vz->datal[i]);

Config* conf)

#pragma acc parallel loop present (dyn) reduction (+:kinetic_E) \

copy (kinetic_E) \

(continues on next page)

19.2. Solution

161

OpenACC for GPU: an introduction

for (size_t i=0; i<co
kinetic_E += 1.0

kinetic_E *= 0.5;

present (dyn->vx,
present (dyn—->vy,
present (dyn->vz,
nf->NAtoms; ++i)

* (dyn->vx—>datali
+ (dyn->vy->datal[i
+ (dyn->vz->datali

(continued from previous page)

dyn->vx—->data[:conf->NAtoms]) \
dyn->vy->data[:conf->NAtoms]) \
dyn->vz->data[:conf->NAtoms])

] *dyn->vx—>datali])
] *dyn->vy->datal[i])
] *dyn->vz->datal[i]);

double T = 2.0 * kb * kinetic_E/ (3.0 * conf->NAtoms -3);

double lambda_scaling
<Berendsen_T/T-1));
printf ("T= 1=

#pragma acc parallel

for (size_t i=0; 1 <
{
dyn->vx->datali]
dyn->vy->datali]
dyn->vz->datal[i]

return T;

int main(int argc, char**
{
double T;

int cpu=0;

= sqrt (1 +
H’ ’I‘,

loop present (dyn) \
copyin (lambda_sca
present (dyn—>vx,
present (dyn—>vy,
present (dyn->vz,
conf->NAtoms; ++1i)

*= lambda_scaling;

*= lambda_scaling;
*= lambda_scaling;

argv)

(conf—

>dt/conf->Berendsen_coupling)

lambda_scaling);

ling)\
dyn->vx—->data[:conf->NAtoms]) \
dyn->vy->data[:conf->NAtoms]) \
dyn->vz->data[:conf->NAtoms])

*

(conf—>

Config* conf =
dynamic* dyn =
Forces* forces

forces_from_LJ (dyn,

dump_dyn (dyn,

// sd(dyn, forc
for (int i=0;
{
printf ("St

velocity_v
stat_force

T = berendsen_thermostat (dyn,

update_dyn (dyn,
dump_dyn (dyn,

if (i > 10
{
fprint
break;
}
if (i%100
{
}

printf ("\n

read_params ("conf.dat");
initialize_dyn(conf, 1);
= initialize_forces (conf);

forces, conf);
conf, "w"
es, conf, 0.0001, 0.0001, 2000);

i<conf->nsteps; ++1i)
ep ",1);

erlet (dyn, forces,
s (forces, conf);

conf);

conf);
0 && T > conf->Berendsen_T*1000)

f (stderr,

== 0)

conf, cpu);
conf, "a");

")

"Oups something went wrong with T\n");

(continues on next page)

162

Chapter 19. Hands-on MD simulation of Lennard-Jones system

OpenACC for GPU: an introduction

(continued from previous page)

}

update_dyn (dyn, conf, cpu);
dump_dyn (dyn, conf, "a");
free_dyn (dyn) ;

free_forces (forces);

return O;

19.2. Solution 163

OpenACC for GPU: an introduction

164 Chapter 19. Hands-on MD simulation of Lennard-Jones system

Part IV

Resources

165

CHAPTER
TWENTY

RESOURCES

Most of the resources can be found on the OpenACC website.

20.1 Books

* OpenACC for Programmers: Concepts and Strategies

* Parallel Programming with OpenACC

20.2 Web resources

NVIDIA’s training course

Several computing centers offers OpenACC training courses:
e NERSC
* ENCCS

* OpenACC bootcamps training resources

20.3 Porting your code during NVIDIA hackathons

Each year several hackathons and bootcamps are organized by NVIDIA. You can apply for a project and get help from
mentors to port your code.

Have a look a this website.

20.4 Contacts (firsthame.name@idris.fr)

¢ Thibaut Véry
e Rémy Dubois
¢ Olga Abramkina

167

https://www.openacc.org/resources
https://www.informit.com/store/openacc-for-programmers-concepts-and-strategies-9780134694283
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979
https://developer.nvidia.com/openacc-courses
https://www.nersc.gov/users/training/events/introduction-to-openacc-part-1-of-3-openacc-training-series-april-17-2020/
https://enccs.github.io/OpenACC-CUDA-beginners/
https://github.com/gpuhackathons-org/gpubootcamp
https://www.gpuhackathons.org/events

OpenACC for GPU: an introduction

168 Chapter 20. Resources

CHAPTER
TWENTYONE

THE MOST IMPORTANT DIRECTIVES AND CLAUSES

21.1 Directive syntax

Sentinel Clause(option, ...) ...
C/C++:#pragma acc copyin(array) private(var) ...
Fortran: 1$acc copyin(array) private(var) ...

If we break it down, we have those elements:

 The sentinel is a special instruction for the compiler. It tells him that what follows has to be interpreted as OpenACC
directives

¢ The directive is the action to do. In the example, parallel is the way to open a parallel region that will be offloaded
to the GPU

 The clauses are “options” of the directive. In the example we want to copy some data on the GPU.

* The clause arguments give more details for the clause. In the example, we give the name of the variables to be
copied

21.2 Creating kernels: Compute constructs

Directive Number of kernels created Who’s in | Comment
charge?
acc par— | One for the enclosed region The developer!
allel
acc ker— | One for each loop nest in the en- | The compiler
nels closed region
acc se— | One for the enclosed region The developer | Only one thread is used. It is mainly for
rial debug purpose

169

OpenACC for GPU: an introduction

21.2.1 Clauses

Clause Available for Effect

num_gangs(#gangsparallel, ker— | Setthe number of gangs used by the kernel(s)
nels

num_workers(#workersk11el, ker— | Set the number of workers used by the kernel(s)
nels

vec- parallel, ker— | Setthe number of threads in a worker

tor_length(#length)nels

reduc- parallel, ker— | Perform areduction of op kind on vars

tion(op:vars, nels, serial

L))

private(vars, parallel, serial | Make vars private at gang level

.Y

firstpri- parallel, serial | Make vars private at gang level and initialize the copies with the value

vate(vars, that variable originally has on the host

.Y

21.3 Managing data

21.3.1 Data regions

Region

Directive

Program lifetime

acc enter data & acc exit data

Function/Subroutine | acc declare
Structured acc data
Kernels Compute constructs directives

21.3.2 Data clauses

To choose the right data clause you need to answer the following questions:

* Does the kernel need the values computed on the host (CPU) beforehand? (Before)

* Are the values computed inside the kernel needed on the host (CPU) afterhand? (After)

Needed after Not needed after

Needed Before

copy(varl, ...) copyin(var2, ...)

Not needed before

copyout(var3, ...) | create(var4, ...)

170

Chapter 21. The most important directives and clauses

OpenACC for GPU: an introduction

Effects

clauseeffect when entering the region effect when leaving the region

cre- | If not already present on the GPU: allocate the memory | If not in another active data region: free the

ate | needed on the GPU memory on the GPU

copyip If not already present on the GPU: allocate the memory | If not in another active data region: free the
and initialize the variable with the values it has on CPU memory

copy- If not already present on the GPU: allocate the memory | If not in another active data region: copy the

out | needed on the GPU values from the GPU to the CPU then free the

copy | If not already present on the GPU: allocate the memory | If not in another active data region: copy the
and initialize the variable with the values it has on CPU value

presentCheck if data is present: an error is raised if it is not the | None
case

create

kernel
data
region|

copyout

21.3.3 Updating data

What to update Directive
The host (CPU) “acc update self(vars, ...)
The device (GPU) | “acc update device(vars)

21.4 Managing loops

21.4.1 Combined constructs
The acc loop directive can be combined with the compute construct directives if there is only one loop nest in the
parallel region:

* acc parallel loop <union of clauses>

* acc kernels loop <union of clauses>

e acc serial loop <union of clauses>

21.4. Managing loops 171

OpenACC for GPU: an introduction

21.4.2 Loop clauses

Here are some clauses for the acc 1loop directive:

Clause Effect

gang The loop activates work distribution over gangs

worker The loop activates work distribution over workers

vector The loop activates work distribution over the threads of the workers

seq The loop is run sequentially

auto Let the compiler decide what to do (default)

independent For acc kernels: tell the compiler the loop iterations are independent
collapse(n) The n tightly nested loop are fused in one iteration space
reduction(op:vars, ...) | Perform a reduction of op kind on vars

tile(sizes ...) Create tiles in the iteration space

21.5 GPU routines

You can write a device routine with the acc routine <max level> directive: max_level is the maximum
parallelism level inside the routine including the function calls inside. It can be gang, worker, vector.

21.6 Asynchronous behavior

You can run several streams at the same time on the device using async(queue) and wait clauses or acc wait directive.

Directive async(queue) | wait(queues,...)
acc parallel
acc kernels
acc serial

acc enter data
acc exit data
acc wait

| ||

lEaiReikeiklke

For the async clause, queue is an integer specifying the stream on which you enqueue the directive. If omitted a default
stream is used.

21.7 Using data on the GPU with GPU aware libraries

To get a pointer to the device memory for a variable you have touse acc host_data use_device (data). Useful
for:

¢ Using GPU libraries (ex. CUDA)

e MPI CUDA-Aware to avoid spurious data transfers

172 Chapter 21. The most important directives and clauses

OpenACC for GPU: an introduction

21.8 Atomic construct

To make sure that only one thread performs a read/write on a variable you have to use the acc atomic <operation>
directive.

operation is one of the following:
* read
e write
* update (read + write)

* capture (update + saving to another variable)

21.8. Atomic construct 173

	I Day 1
	Introduction to GPU programming with directives
	What is a GPU?
	Programming models
	Low level programming languages: CUDA, OpenCL
	CUDA
	OpenCL

	Using libraries
	Directives

	OpenACC
	Compilers
	Disclaimer

	OpenMP target
	Compilers

	Host driven Language
	Levels of parallelism
	Important notes
	Information about NVIDIA devices

	Get started with OpenACC
	OpenACC directives
	A short example
	Solution
	Let’s analyze what happened.

	Loops parallelism
	Directive
	Non independent loops

	Managing data in compute regions
	Exercise: Gaussian blurring filter
	Solution

	Reductions with OpenACC
	Available operations
	Reduction on several variables

	Exercise
	Solution

	Important Notes

	Manual building of an OpenACC code
	Build with NVIDIA compilers
	Compiler options for OpenACC
	Other useful compiler options
	Examples

	Build with GCC compilers
	Compiler options for OpenACC
	Other useful compiler options
	Example

	Exercise

	Data management
	Why do we have to care about data transfers?
	The easy way: NVIDIA managed memory
	Manual data movement
	Data clauses
	Array shapes and partial data transfers

	Implicit structured data regions associated with compute constructs
	Exercise
	Answer

	Explicit structured data regions acc data
	Exercise
	Solution
	WRONG example

	Updating data
	acc update device
	acc update self

	Explicit unstructured data regions acc enter data
	acc enter data
	acc exit data
	Exercise
	Solution

	Implicit data regions acc declare
	Example

	Hands-on Game Of Life
	What to do
	Solution

	II Day 2
	Compute constructs
	Giving more freedom to the compiler: acc kernels
	Syntax
	Independent loops

	Running sequentially on the GPU? The acc serial compute construct
	Syntax

	Data region associated with compute constructs

	Variables status (private or shared)
	Default status of scalar and arrays
	Private variables
	Simple cases
	A bit less straightforward

	Caution

	Advanced loop configuration
	Syntax
	Restrictions
	Example
	Exercise
	Solution

	Using OpenACC in modular programming
	acc routine <max_level_of_parallelism>
	Wrong examples

	Named acc routine(name) <max_level_of_parallelism>
	Directives inside an acc routine
	Exercise
	Solution

	Profiling your code to find what to offload
	Development cycle
	Quick description of the code
	Profiling CPU code
	The graphical profiler
	The timeline
	Profile
	Analysis

	Profiling GPU code: other tools
	NVCOMPILER_ACC_NOTIFY

	Multi GPU programming with OpenACC
	Disclaimer
	Introduction
	API description
	MPI strategy
	Remarks

	Multithreading strategy
	Exercise
	GPU to GPU data transfers
	acc host_data directive
	Exercise
	Solution

	Generate Mandelbrot set
	Introduction
	What to do
	Solution

	Generate Mandelbrot set
	Introduction
	What to do
	Solution

	III Day 3
	Performing several tasks at the same time on the GPU
	async clause
	wait clause
	wait directive
	Exercise
	Solution
	Comments

	Advanced NVIDIA compiler option to use Pinned Memory: -gpu=pinned
	Bonus

	Atomic operations
	Syntax
	read, write, update
	capture

	Restrictions
	read
	write
	update
	capture

	Exercise
	Solution

	Deep copy
	Top-down deep copy
	Syntax
	Example
	Exercise
	Solution

	Deep copy with manual attachment
	Exercise
	Solution

	Using CUDA libraries
	acc host_data use_device
	Example with CURAND

	Loop tiling
	Syntax
	Restrictions
	Example
	Exercise
	Solution

	Hands-on MD simulation of Lennard-Jones system
	What to do
	Solution

	IV Resources
	Resources
	Books
	Web resources
	Porting your code during NVIDIA hackathons
	Contacts (firstname.name@idris.fr)

	The most important directives and clauses
	Directive syntax
	Creating kernels: Compute constructs
	Clauses

	Managing data
	Data regions
	Data clauses
	Effects

	Updating data

	Managing loops
	Combined constructs
	Loop clauses

	GPU routines
	Asynchronous behavior
	Using data on the GPU with GPU aware libraries
	Atomic construct

