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Abstract 

Open Ocean is a French SME company which develops innovative on-line solutions to help plan and manage offshore 
developments. They conceived an oceanographic data study tool which computes and formats data (Pre-Processing and 
Processing) and which provides relevant oceanographic information to industrial marine companies (Post-Processing) 
through a web interface. But the “time-to-solution” of this post-processing step is too long and hence not compatible with 
industrial use. Therefore, the goal of this SHAPE project is to improve post-processing by optimising a parallelized Python 
program of Open Ocean which processes and computes statistics (e.g. wind speed) on big datasets. To carry this out, 
engineers of Open Ocean and IDRIS worked together to optimise this program by using resources available in a national 
supercomputing centre: high performance parallel machine and parallel file system (GPFS, 100 GB/S bandwidth). 
This paper describes the parallelisation process implemented by Open Ocean and its porting on the Ada machine (IBM 
cluster of Intel E5-4650 processors, 332 compute nodes) at IDRIS. It also covers performance testing and identification of the 
bottleneck in the execution. 
 

1. Introduction 

The Earth’s oceans cover 71% of its surface and are more than ever a key resource for energy (marine and fossil 
energy), food (fish and seaweed), transport and pharmaceutical (marine biology) sectors but remain a complex 
and hostile environment. Against this background, Open Ocean is a French company which has conceived 
innovative online solutions since 2011 which will change the way offshore developments are planned and 
managed [1]. 
This marine energy consultancy specialised in ocean numerical modelling for the marine energy and offshore 
wind sectors. Based on high resolution ocean numerical modelling, statistical analysis and data mining, Open 
Ocean provides a large catalogue of services both for the planning phase with the Metocean Analytics online 
offer (resource assessment, site characterization...) and the operational phase. These services are available for 
any location throughout the world.  
Open Ocean has gained extensive knowledge of the challenges encountered by tidal project developers while 
providing key oceanic data and consultancy (for instance to SSER in the Orkneys or Futures Energies in the Raz 
Blanchard). Its goal is to advise clients on issues from potential market and resource assessment to tidal farm 
yield estimates. Open Ocean is involved in several research projects related to the marine energy industry 
focusing on the methodology of resource assessment, the impact of turbulence on tidal array design and multi-
scale ocean numerical modelling. Furthermore, Open Ocean is a member of France Energies Marines and a 2012 
recipient of the Young Innovative Company national contest organised by the French Ministry of Research. 
 
Open Ocean uses a model where the ocean is discretised on a grid with hundreds of metres of spatial resolution. 
On each point of the grid, hydrodynamic equations are solved using ocean models developed in worldwide 
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research centres. It can take several months to simulate 20 years of data on Open Ocean cluster (2 nodes) but 
once the simulations are performed, the bloc of data is analysed by the Open Ocean statistical toolbox. 
 
In order to provide an on-line, on-demand tool, the whole Open Ocean Processing chain (pre-processing, 
processing and post-processing) has been automatized. The main problem to be tackled is the post-processing 
step. Indeed, at this time, it takes between 2 and 3 hours to extract time series data spanning 20 years and to 
analyse it (“statistics calculation”) at 10 points of interest. As clients can require an analysis of several hundred 
points in the case of an offshore wind farm for instance, fast data access is vital for Open Ocean. 
The post-processing step consists of a Python 3 program. The results produced by this program are then 
accessible from the Metocean Analytics [2]on-line offer through a user-friendly web interface (see Figure 1). 
This tool gives on-demand access to metocean† data, statistics and reports through essential analytics and 
displaying tools. Its key feature is that it permits a work-time gain of several weeks.  

 

 

Figure 1: User-friendly Metocean Analytics web interface 

 

The computing time of the post-processing step could be long (several hours) if the client requires an analysis of 
hundreds of points in order to know the metocean statistics for an offshore wind farm for instance. This 
computing time is too long for a web usage and is not compatible with an industrial use. To improve this tool, a 
profiling of the post-processing step is needed along with better parallelisation of data extraction and statistics 
calculations to identify the major bottlenecks. The aim of this study was to increase the speed of the whole 
process of extracting and processing data from datasets by parallelizing the execution of Open Ocean post-
processing tools.  
 
In the next sections, we will describe the steps of the work that was done in collaboration between Open Ocean 
and the IDRIS HPC (High Performance Computing) centre to enhance post-processing calculations.  

2. Code porting at IDRIS 

2.1. Description of the machine used 
The Institute for Development and Resources in Intensive Scientific Computing (IDRIS), founded in 1993, is a 
service-based structure assuring the implementation and operation of a high performance, calculation-intensive 
environment designed to meet the great scientific challenges of numerical simulation. The machine group 
operated by IDRIS now consists of two architecturally complementary supercomputers (“Turing” and “Ada”) 
owned by GENCI (“Grand Equipement National de Calcul Intensif”) and were installed at the end of 2012 [3]. 
Of the two, Ada (see Figure 2) is the most appropriate machine for the working with Open Ocean as it has the 
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most wide-ranging usage. It is composed of large memory SMP nodes (IBM x3750-M4) interconnected by a 
high-speed InfiniBand network. Each compute node contains four 8-core Intel Sandy Bridge E5-4650 processors 
(32 cores per node) with a clock speed of 2.7 GHz and 2 connections to the InfiniBand FDR10 Mellanox 
network. Finally, the General Parallel File System (GPFS), a high-performance clustered file system developed 
by IBM, is used. 
 

 

Figure 2 : The Ada machine (© CNRS photo library/C. Frésillon) 

 
2.2. Simple test of the post-processing chain (sequential) 

In order to operate the post-processing step, some Python 3 libraries had to be installed on Ada, such as PyQt4, 
GDAL, lxml, wafo and others. The size of the dataset downloaded for a simple but realistic case is almost 1.4 
TB. The dataset contains the physical data (netCDF4 files) on which the statistical calculations will be done: 
wind, wave and flow data for the scenario treated in this study.  
 
The first compute test (hereafter named “Test 1”) consists of extracting 7 types of statistics at 2 points of interest. 
What is called “statistic” corresponds here to what will be treated by the software (extraction, time series 
computing, visualisation, exportation…) and has no link with mathematics. For example, the statistics for this 
first test are: Distribution Rose, Empirical Probability Description, Empirical Joint Probability Distribution, 
Extreme values, Times Series and Weather Window. 
All the details which are needed to extract and analyze the data are contained in an XML file, hereafter named 
XML_config_file. This parameter file, also called “statistics file”, specifies the following information:  

• Datasets and associated variable on which to work 
• Points of interest (longitude and latitude)  
• Observation period 
• Statistics which will be calculated or executed. 

 
The dataset and the parameters file are used by the Python script Projet.py to export computation results (mainly 
generated in netCDF4 format) and visualisations (graph or table representing treated data). The schema below 
summarises this chain calculation (Figure 3). 
 
 

 

Figure 3: Input and output files of Projet.py 
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A report (55 pages for this first case) is then generated by the Metocean Analytics web tool with details and 
explanations about every statistic, result and graphic. 

For the code porting on Ada machine, it was necessary to have a specific configuration file specifying the path to 
the dataset. Indeed, this situation was foreseen: An option was created in order to include this second 
configuration file. The Python script Projet.py is then used like this:  

python3  Projet.py  <FOLDER>  <XML_config_file>  --runs_xml  <XML_spec_config_file> 

The option <FOLDER> corresponds to the path of the folder where the calculation will be done; 
<XML_config_file> is the statistics file and <XML_spec_config_file> is the specific file for the Ada machine. 
 
For the “Test 1” case (computation of 7 statistics at 2 points of interest), the calculation takes 61 minutes on 
Open Ocean’s machine against 51 minutes on Ada machine. The difference of calculation time may come from 
the difference between the file systems (NFS versus GPFS) and/or the processor type. 
 
To improve the compute time, we will now focus on the parallelization of the tasks. 

3. Post-processing parallelization description 

The script Projet.py is already partially optimised. Indeed, before the step of a statistic computation (the time 
series for instance), the script checks if the data needed by the statistic are already extracted (as “pickle” format). 
But this method remains sequential: The statistics will be computed one after the other. To parallelize the 
calculation, the idea is to have one job for each statistic, as many jobs as data extractions and to execute these 
jobs in parallel whenever possible. That is, an execution plan will be generated to identify the data that are used 
and pre-processed by several statistics to then arrange the jobs executions. Until now, the submission and 
execution of these jobs were run by the software ProActive Parallel Suite [4]. This software does include high-
performance workflows and application parallelization but, unfortunately, it is hard to install without help from 
the company commercial support. 
 
To summarize, two steps are needed to parallelize the post-processing computation: 

- Creation of a dependency tree which will be export to a XML file format. 
- Job submission and execution. 

  
Using the ability of their local scheduler to wait for the end of a process before launching a new one, Open 
Ocean implemented a script which generates a workflow plan (a tree of dependencies) for each project. When 
executed, this plan forces some tasks to wait for others to finish in order to use previously processed data. The 
main algorithm of this script is simple: 

- If several tasks use the same processed data, pick one that will be launched before all the others. These 
“commonly used data” must be serialized into pickle format. 

- All other tasks which use these data will start after the first one finishes: When launched, they must first 
try to load existing serialized pickles instead of directly processing those data. 

 
This parallelization method relies on the ability to predict the need of each task (in term of “commonly used 
data”). Indeed, this is possible thanks to the main parameter file XML_config_file (see previous section) which 
gives a summary of all the statistics (i.e. tasks) needed for a project, and each variable needed to compute these 
tasks. By parsing this file and by using the previously described algorithm, Open Ocean implemented the 
make_workflow.py Python script, which generates an execution plan as an XML file, understandable by the 
scheduler (workflow.xml): 

python3  parallelization/make_workflow.py  <XML_config_file>  -o  workflow.xml 
 
Figure 4 shows the tree of dependencies generated by make_workflow.py script for a simple project. In this 
diagram, each dependency is represented as an arrow. The top task SYMLINK_CREATOR is executed before all 
others: The aim of this task is to create the directory structure into which each task will export its output files (in 
order to avoid concurrent directory creations). When it has finished, WIN_mag10_380, CUR_theta_TS and 
WAV_fp_TS_380 are launched simultaneously, and so on. 
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Figure 4: Visual representation of a dependency tree exported by 'make_workflow.py'. 

 
The output file workflow.xml is an even simpler example and is shown in Figure 5. In this example, the task 
WIN_mag10_380 corresponds to the wind statistics (wind speed and direction) and is dependent on the task 
SYMLINK_CREATOR. 
 
For the “Test 1” case, a dependency tree was generated by the Python script previously described and was used 
by the scheduler installed on the Open Ocean machine. The calculation time is 30 minutes on this machine 
(instead of 61 minutes in sequential mode). 
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Figure 5: Example of a simple tree of dependencies using XML format  

4. Activity done during the SHAPE project: post-processing optimisation 

4.1. Code porting on the Ada machine at IDRIS 
To enable porting the post-processing code on Ada (and by extension to other machines in the PRACE program), 
it was necessary to adapt the software to the machine in order to avoid the challenge of installing ProActive 
scheduler on Ada without using the company for-pay support. It was decided to use the XML file generated by 
the make_workflow.py Python script. Indeed, this file represents the tree of dependencies: All of the 
dependency tasks are listed and thus can be used. The IDRIS team had developed a Python script 
export_xml_to_job.py to convert this XML file to a file readable by a machine job scheduler: LoadLever‡ for 
Ada and SLURM§ for other machines. It is possible for both LoadLever and SLURM to monitor multi-step jobs, 
i.e. to submit a job only if a previous job (or several) has been finished. The usage of export_xml_to_job.py is 
described below (Figure 6). 
 

 

Figure 6: Usage of the Python script export_xml_to_job.py 

 

 

‡ LoadLeveler is the job scheduler specific to IBM machines. 
§ SLURM is an open-source job scheduler designed for Linux clusters of all sizes. 

<job options=…> 
<taskFlow> 
    <task name="WIN_mag10_380" runAsMe="true"> 
        <depends> 
            <task ref="SYMLINK_CREATOR"></task> 
        </depends> 
        <nativeExecutable> 
            <staticCommand value="bash"> 
                <arguments> 
                    <argument value="./Step/WIN/command"></argument> 
                </arguments> 
            </staticCommand> 
        </nativeExecutable> 
    </task> 
    <task name="SYMLINK_CREATOR" runAsMe="true"> 
        <nativeExecutable> 
            <staticCommand value="bash"> 
                <arguments> 
                    <argument value="./Step/SYMLINK/CREATOR/command"></argument> 
                </arguments> 
            </staticCommand> 
        </nativeExecutable> 
    </task> 
</taskFlow> 
</job> 

>>> python3 export_xml_to_job.py --help 
usage: export_xml_to_job.py [-h] -i inputXMLFileName (--loadleveler | --slurm) 
 
Create a multistep LoadLeveler or SLURM job from a workflow XML file 
 
Optional arguments: 
  -h, --help            Show this help message and exit 
  -i inputXMLFileName, --input inputXMLFileName        Workflow XML file (required) 
  --loadleveler      Create a LoadLeveler job file of the workflow. 
  --slurm               Create a SLURM job file of the workflow. 
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For dependent jobs, the LoadLeveler scheduler gathers multiple job steps together in a single queue script: Each 
step is defined in a sub-job to which are associated its own resources (cores, memory, calculation time). The 
dependency of one job to another job (or several) can be specified using the directive “#@dependency”. The 
writing of the file must obey the following schema: First, all the steps are defined with explicit directives for the 
LoadLeveler workload scheduler (resources, and dependencies if needed); then the batch commands to be 
executed in the different steps (sub-jobs) will be specified within a “case” bash instruction. A very simple 
LoadLeveler script generated by export_xml_to_job.py is shown below (Figure 7). In this example, the sub-job 
“Step 2” is dependent on Step 1: This sub-job will only be submitted once the sub-job “Step 1” is finished.  
 

 

Figure 7: Example of the transcription of a simple dependency tree for LoadLeveler job scheduler  

 
Contrary to Loadleveler, the SLURM job scheduler requires a single script per sub-job: The dependencies are 
specified during the job submission. If we follow the same simple example, the script generated for SLURM will 
be: 
 

 

Figure 8: Example of the transcription of a simple dependency tree for SLURM job scheduler 

 
A final file (Figure 9) is then generated to facilitate the submission of each SLURM job: The execution of this 
single file will automatically submit the SLURM jobs with the correct dependencies.  
 

#=========== Global directives =========== 
# @ job_name = OPENOCEAN 
 
#=========== Step 1 directives =========== 
# @ step_name = SYMLINK_CREATOR 
# @ job_type = serial 
# @ wall_clock_limit = 01:00:00 
# @ queue 
 
#=========== Step 2 directives =========== 
# @ step_name = WIN_mag10_380 
# @ dependency = (SYMLINK_CREATOR == 0 ) 
# @ job_type = serial 
# @ wall_clock_limit = 01:00:00 
# @ queue   
 
case ${LOADL_STEP_NAME} in 
    #============ Step 1 commands ============ 
    SYMLINK_CREATOR) 
     ./Step/SYMLINK/CREATOR/command  
    ;; 
    #============ Step 2 commands ============ 
    WIN_mag10_380) 
      ./Step/WIN/command 
    ;; 
 esac 

>>> cat SYMLINK_CREATOR.bash 
#!/bin/bash 
#SBATCH --nodes=1 
#SBATCH --ntasks=1 
#SBATCH -J SYMLINK_CREATOR 
#SBATCH --time=01:00:00 
 
./Step/SYMLINK/CREATOR/command 

>>> cat WIN_mag10_380.bash 
#!/bin/bash 
#SBATCH --nodes=1 
#SBATCH --ntasks=1 
#SBATCH -J WIN_mag10_380 
#SBATCH --time=01:00:00 
 
./Step/WIN/command 
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Figure 9: Example of the submission of dependent jobs using the SLURM job scheduler  

Using this script, the submission of multi-step jobs is now possible on any machine which has LoadLeveler or 
SLURM installed. Furthermore, it can be easily adapted to other machine job schedulers. The calculation time of 
the “Test 1” case is now only 12 minutes on the Ada machine at IDRIS.  
 
To go further on testing the performances, a bigger case was used. This “Test 2” case computes the same 
statistics as for Test 1 (7 statistics) but at 100 points of interest. The results of the Test 1 and Test 2 computations 
are shown in Table 1. The calculation using the IDRIS machine is 2.5 times faster for Test 1 than using the Open 
Ocean machine, and 2.7 times faster for Test 2. 
It is important to highlight that for the second case, a dedicated node was used for the computation on the Ada 
machine to have an exact performance comparison with the Open Ocean machine: 32 CPU are then used in 
parallel on both machines. 
 

Job submission type Test 1 duration 
(minutes) 

Test 2 duration 
(hours) 

Sequential Open Ocean 61 x 
Sequential IDRIS (Ada) 51 x 
Multi-step Open Ocean 30 4h40 
Multi-step IDRIS (Ada) 12 1h44 

Table 1: Summary of calculation results for two test cases. “Sequential” refers to what was explained in paragraph 2.2 and “Multi-step” in 
paragraph 4 of this document. Test 1 consists of the computation of 7 statistics at 2 points of interest. Test 2 consists of computation of the 

same 7 statistics at 100 points of interest.  

4.2. Post-processing optimisation 

To try to better understand the computation behaviour, we will focus on the Test 2 “multi-step” case launched at 
the IDRIS computer centre. For this case, 3700 steps were needed to compute the post-processing data. Figure 
10 shows the histogram of the number of jobs in function of their computation times.  

 

Figure 10: Histogram of the number of jobs in function of their computation times on the Ada machine for Test 2 case. 

One can see that most of the jobs last less than 30 seconds. The longest computation is about 7min40s, and no 
more than about 20 jobs last more than 5 minutes, whereas 2500 jobs last 12 seconds or less. With this 

>>>cat job-for-slurm.bash 
#!/bin/bash 
JID_SYMLINK_CREATOR=`sbatch  SYMLINK_CREATOR.bash | cut -d " " -f 4` 
JID_ WIN_mag10_380=`sbatch  --dependency=afterok:$JID_SYMLINK_CREATOR WIN_mag10_380.bash 

 | cut -d " " -f 4` 
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information and other details about what kind of task need more or less time, the next step would be to test how 
to optimise the computation itself: One solution for Open Ocean could be to use more than 32 CPU for the post-
processing computation; another could be to re-organise and to optimise the computation script. 

5. Conclusions 

    Benefits of PRACE cooperation: 
The PRACE cooperation gave Open Ocean the opportunity to port their codes into a high performance computer 
system, thus confronting them with the standards of this computer science field. The in-depth knowledge of 
IDRIS engineers also gave Open Ocean a new look at both their hardware and file transfer solution. 
 
    Benefits for Open Ocean SME: 
This study allowed Open Ocean to identify the main bottleneck of its post-processing program (i.e. fetching data 
from their dataset) and to reconsider their hardware choice. Also, by porting the post-processing code to the 
IDRIS infrastructure, this PRACE project gave the opportunity to Open Ocean to try and assess other job 
schedulers such as SLURM or LoadLeveler, which highly increases the portability and the efficiency of their 
software solution. 
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