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Abstract 

Scienomics is developing Chameleon (Chain Altering Monte-Carlo) to perform Monte-Carlo (MC) simulations of 
several types of chemical systems such as polymers, nanomaterials or composite materials. Realistic modelling of 
materials requires that the systems are large enough to get reliable results for the properties computed. Chameleon 
uses an all-atoms model meaning that the number of interactions needed to compute the physical properties, hence 
the computational resources, increases fast as the number of atoms in the system increases. In this project the work 
of Scienomics and IDRIS engineers allowed Chameleon to treat larger systems faster thanks to a dramatic 
improvement of serial and parallel performances. 

 

Introduction 
The development and optimisation of new materials for a wide range of applications requires a lot of manpower 

and financial means. It is therefore important to try to predict how the properties of the materials will change when 
the composition of an existing compound is changed or when de novo materials are designed.  

With the increase in computing power, it is now possible to perform realistic simulations of the properties of new 
classes of materials. Simulations are an important scientific tool and can greatly help in the designing process. 

With this collaboration, IDRIS provided Scienomics with an access to supercomputers and computing hours as 
well as expertise in parallel code execution. 

Access to a supercomputing centre provided Scienomics with the means to improve and/or validate three 
different aspects of the Chameleon code:  

1- Improve Chameleon performance for single processor simulations 
2- Improve Chameleon parallelization:  

a. Increase the part of the code parallelized 
b. Improve the parallelization scaling for large number of computing cores 
c. Test hybrid implementation (not performed during the project) 

3- Leverage the large supercomputer capabilities to run long simulations and a number of simulations 
statistically meaningful. 

                                                           
* Corresponding author. E-Mail address: thibaut.very@idris.fr 
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Scienomics 

Scienomics, established in 2004, is a French company based in Paris with an international presence (Greece, 
Germany, England, US) and customers worldwide. Scienomics specializes in the development of materials 
modelling and simulation Software. Its flagship is MAPS (Materials Processes and Simulation Platform), a graphical 
user interface to build, simulate and analyse several complex materials, thus providing a unique combination of 
modelling and simulation technology through recent advances in theoretical and computational methods. One of the 
most powerful tools available in MAPS is Chameleon (Chain Altering Monte-Carlo), an application which is a 
generalized Connectivity Altering Monte-Carlo molecular modelling code designed predominantly for simulating 
large molecular weight polymer melts and complex molecules using atom-based force fields. Chameleon is a 
simulation software which combines the widely used Markov Chain Monte-Carlo (MCMC) technique and recent 
advances in connectivity altering algorithms. It is capable of relaxing increasingly complex and large modern 
materials, characteristics that cannot be addressed through standard techniques. The code integrates all these key 
features in a compact, universal Monte-Carlo tool with many additional new features in order to deal with polymer 
types and many different force fields (united-atom and all-atom). Chameleon also supports coarse-grained 
representation of molecules to be used in multiscale modelling techniques. 

Presentation of IDRIS computing resources 
The Institute for Development and Resources in Intensive Scientific Computing (IDRIS) is a unit of the French 

Centre for Scientific Research (CNRS) and its major centre for high performance calculation. The computations for 
this project were carried out on two machines hosted by IDRIS. The technical characteristics of these machines are 
the following: 

• Ada: IBM x3750-M4 compute nodes 
o 4 Intel Sandy Bridge E5-4650 8-core sockets at 2.7 GHz (32 cores/node) 
o 4GiB or 8GiB per core of memory   
o InfiniBand FDR10 Mellanox network 
o GPFS parallel file system 

•  Ouessant: IBM OpenPower prototype (3 Firestone and 12 Minsky nodes) 
o 2 IBM’s POWER8+ 10-core sockets (20 physical cores/node) 
o Up to 8 simultaneous multithreading (SMT) per core 
o 128 GiB of memory 
o 4 Nvidia P100 GPUs (16 GiB of memory) 
o Mellanox EDR IB CAPI interconnexion network 

Chameleon 
Chameleon is a simulation tool based on the principles of the Markov Chain Monte-Carlo technique. As with any 

simulation method that aims to explore efficiently those regions of phase space (position-momentum space) that are 
most likely to physically occur, the Monte-Carlo (MC) method samples phase space by generating new 
configurations that satisfy some energetic criteria which ensure the states visited are indeed physically realizable 
states. New configurations are generated using a set of Monte-Carlo moves (in some cases MC moves are 
unphysical or even fictitious) which aim to equilibrate a set of desired characteristics of the system.  

The moves can vary from simple to sophisticated and complex depending on the specific needs of the study. The 
majority of moves are connected with an ensemble of statistical mechanics. For example, the volume fluctuation 
move, which is solely responsible for equilibrating the density of the system is implemented in the isothermal-
isobaric ensemble (NPT) and the Connectivity Altering End-Bridging move in the semi-grand canonical ensemble 
(μ*NVT). 
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Connectivity Altering moves are significant components of Chameleon since they are the most efficient and 
drastic ones and the only available moves capable of equilibrating long-chain polymer systems. The use of certain 
moves depends on the size, architecture and chemical constitution of the system. 

Chameleon is implemented through a very flexible and comprehensive graphical user interface (GUI) integrated 
in MAPS. The GUI provides the user with all the necessary information for interaction with the program (statistical 
ensemble, initial simulation conditions, MC moves to use, etc.). At the MC algorithm level, information from the 
GUI serves as an input for performing the simulation.  

Every Monte-Carlo iteration involves a random selection of a move from the set of MC moves that the user has 
requested. By performing the selected move a new configuration Rn of the system is generated representing a 
possible new state of the system. The energy of the Rn configuration is estimated based on the assigned force-field 
that has been selected by the user. To be accepted, the new configuration must fulfill one of the two conditions: 

• the energy of the Rn configuration is smaller than the energy of the previous state configuration Rn-1 
(Markov Chain process)  

• the energy of the new configuration is larger than the one of the configuration. A random number is 
generated and is lower compared to some metric. 

Then the Rn configuration is set as the new state of the system;  
Otherwise, the system returns to its previous state (Rn-1 configuration) and a new MC move is attempted. This 
process continues until the energy, or any other property of interest in the system, is equilibrated (values 
fluctuating around a plateau value). 

Description of code versions 

The part of the Chameleon code which is parallelized is the forcefield class; that is the functions that are 
responsible for calculating the non-bonded energy among atom pairs inside the system. These functions are divided 
into three categories: 

1. Calculation of non-bonded interactions of a single atom with the rest of the system (Fsingle) 
2. Calculation of non-bonded interactions of a list of atoms with the rest of the system (Flatoms) 
3. Calculation of all non-bonded interactions inside the system (Ftotal) 

For every atom in the system, the effective interacting neighbours are calculated, stored and updated during the 
simulation through the use of Verlet lists. With Verlet lists the usual O(n2) calculation for the estimation of the total 
energy of the system (using the Ftotal function) is reduced to an O(n log(n)) algorithm. 

Since most of the Monte-Carlo moves induce changes in a limited number of atoms in the system (for the 
simplest case of a linear chain, no more than 9 atoms can change simultaneously during an MC move), the Fsingle and 
Flatoms functions the most used in the calculations. The Ftotal function is only used in the case of a volume fluctuation 
MC move (this move uniformly scales all atom or molecule positions after a volume change in the simulation box) 
which in a normal MC simulation would not exceed 2% all the moves. However, the Ftotal function is the most 
efficient to parallelize since its calculation involves a double for loop in contrast to the Fsingle and Flatoms functions 
whose estimation is simplified to a single for loop. Based on these considerations, the following Chameleon 
versions were provided and tested: 

 V1.0 
o OpenMP parallelization, only implemented in the Ftotal function. A very small portion of the 
code is actually parallelized, since in the test cases provided the Volume Fluctuation move is used 
with 1.5% of the total percentage of MC moves. 

 V1.1 
o OpenMP parallelization was extended to energy calculation functions of a single atom 
(Fsingle) and a list of atoms (Flatoms).  

 V2.0 
o Added dynamic scheduling (schedule (dynamic)) in the “for reduction” loops of the 
OpenMP region in both Ftotal and Flatoms functions. 
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o Removed OpenMP parallelization from Fsingle. 
 V2.1 

o Replaced the naive lookup algorithm of a particle with a QMap container. 

Modifying the lookup algorithm 

Most of the time is spent in the computation of non-bonded interactions especially the van der Waals type, for 
which the intensity decreases quickly with the distance between the particles. To reduce the number of interactions 
to compute, it is possible to define Verlet lists which divide the system into smaller cells inside which the 
interactions are computed. The algorithm used to find particles was the naive O(n2 ) implementation. By using a 
hash table it was possible to reduce the time required by using an O(n.log(n)) algorithm. This implementation 
explains the dramatic reduction of job duration with Chameleon V2.1. 

Porting the code on HPC computers 

One of the goals of this project was to port Chameleon on HPC architectures. The use of processors with more 
cores and memory allows the code to run larger systems. Since the code is written with OpenMP support, the use of 
a complete node is possible. We compared the performances of two compilers: 

On Ada, the code was built with: 
• GNU g++ 4.4.7 
• Intel icpc 2017.1 

On Ouessant, the code was built with: 
• PGI pgc++ (16.10, 17.01 and 17.05) 
• LLVM xlc++_r 

Up to version 2.0 Chameleon depended on Qt for the management of arrays. A bug with the PGI compiler 
(versions prior to 17.05) prevented the code from compiling correctly. This bug was reported to the manufacturer 
and corrected in version 17.05. 

Results 

Test Cases 

We tested the performance of Chameleon using three test cases having an increasing number of particles. The 
goal of varying the size of the system was to see if the behaviour of Chameleon is better when the size of the 
problem is larger. We have also specified the number of Monte-Carlo steps that were taken during the simulation. In 
all cases, we used oligomers of polyvinyl chloride. 

 
Figure 1. Polyvinyl Chloride
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10xPVC100: small 

 
Figure 2. Simulation box of 

10xPVC100. 
• 10 chains of 100 PVC 

monomers 
• 6,020 particles  
• 10,000 Monte-Carlo 

steps. 

6xPVC500: medium 

 
Figure 3. Simulation box of 

6xPVC500. 
• 6 chains of 500 PVC 

monomers  
• 18,012 particles 
• 1,000 Monte-Carlo 

steps 

64xPVC200: large 

 
Figure 4. Simulation box of 

64xPVC200. 
• 64 chains of PVC 

monomers  
• 76,928 particles 
• 1000 Monte-Carlo 

steps 

Performance analysis 

To assess the performance of Chameleon we used Intel’s Vtune and Advisor tools. With these we were able to 
identify several hotspots in the original code. 

Figure 5 shows the output of Vtune after processing Chameleon on 4 threads. We can see that, as expected, the 
main part of the code is spent in the calculation of non-bonded interactions (energy_vdw_plus_coulomb). In this 
function, Chameleon is looking for particle IDs (get_particle and get_universal_id). The data structure holding this 
information is a Qt array and the lookup algorithm is the naive implementation that scales as O(n2). By using a 
different data structure (standard map), it was possible to reduce the computing time of this part of the code.  

 
 

 
Figure 5 Output of VTune for the most CPU demanding part of V1.1 
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Ada 

Compilers 

On Ada it is possible to use GNU or Intel’s compiler to build the code. Figure 6 shows the performances for both 
tools for the small test case (10xPVC100). As one can see, the code has a similar behaviour with both compilers. 
Nonetheless, the performance is better with Intel’s C++ compiler and we decided to continue the tests with only 
icpc. 

 
Figure 6. Comparison of GNU and Intel’s compiler performances on Ada. The test case used is 10xPVC100. Both axes 

are base-2 log scales. Crosses indicate perfect scaling 

Test case size 

Figure 7 shows the scaling behaviour of the different versions of Chameleon used during the project. Versions 1.0 
and 1.1 show a similar behaviour above 4 cores whereas V1.0 shows better performance below that threshold.  

Version 2.0 introduced some changes in the OpenMP regions and the scalability was better. One has to note that 
the scalability degrades after 8 cores. It might be due to the NUMA nature of the machine.  
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Figure 7. Comparison of the different versions of Chameleon. The small (upper left), medium (upper right) and large 

(bottom) tests cases were run on Ada. Crosses indicate the perfect scaling time. Both axes are base-2 log scales. 

 Ouessant 

Compilers 

On Ouessant we tested IBM XL and PGI compilers. As one can see on Figure 8 both compilers show similar 
general behaviour. We note that the performance is slightly better with the xlC compiler. 

 
Figure 8. Comparison of xlC and PGI compilers for the version 2.1 of the code. The medium case is used. Both axes are 

base-2 log scales. 
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Results 

Figure 9 show the scaling of the two latest versions of the code. As expected, Chameleon behaves the same way 
on Ouessant as on Ada. Version 2.1 outperforms version 2.0 but the parallel efficiency is lost. 

 
Figure 9 Comparison of the different versions of Chameleon using the xlC compiler. The small (left), medium (right) 

tests cases were run on Ouessant. Crosses indicate the perfect scaling time. Both axes are logscale in base 2. 
 

Benefits for the SME 

By accessing the computational resources provided within the project, Scienomics and IDRIS engineers were 
able to assess the performance of Chameleon in very extreme system cases. Porting Chameleon on HPC 
architectures and using an increased number of processors with more cores and memory, allowed us to execute 
Chameleon using very large realistic systems and at the same time assess the full spectrum of non-bonded 
interactions (Van der Waals and Coulomb energies). This gave us the necessary feedback to identify the optimum 
number of cores above which the scalability of the OpenMP parallelization in Chameleon degrades. In addition by 
applying powerful code profiling and analysis tools we were able to assess the performance of Chameleon 
algorithms for both sequential and parallel execution and to identify major bottlenecks and hot spots of the code. We 
managed to achieve more than 10x speed-up for the sequential execution of the code with some fluctuations 
depending on the system size (Figure 7 and Figure 9) even though some further efforts are needed to achieve 
improve parallel scalability. 
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