CRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

Steve Deitz

Cray Inc.




C=RA0Y

THE SUPERCOMPUTER COMPANY

Heat Transfer in Pictures

repeat until max
change <¢




CRRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

config const n = 6, epsilon = 1.0e-5;
const BigD: domain(2) = [0..n+1,0..n+1],
D: subdomain (BigD) = [l1..n,1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);

var A, Temp: [BigD] real;

A[LastRow] = 1.0;
do {
[(i,3) in D] Temp(i,j) = (A(i-1,3) + A(i+l1,7)
+ A(i,j-1) + A(i,3+1)) / 4;
const delta = max reduce abs (A[D] - Temp[D]):;
A[D] = Temp[D];

} while (delta > epsilon);

writeln (A) ;



CRRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

config const n = 6, epsilon = 1.0e-5;

Declare program parameters

const = can’t change values after initialization

config = can be set on executable command-line
prompt> a.out --n=10000 --epsilon=0.0001

note that no types are given; inferred from initializer
n = integer (current default, 32 bits)
epsilon = floating-point (current default, 64 bits)




CRRANY

Heat Transfer in Chapel
const BigD: domain(2) = [0..n+1,0..n+1],
D: subdomain (BigD) = [l1..n,1..n], =
LastRow: subdomain (BigD) = D.exterior(1,0);

Declare domains (first class index sets)

domain(2) = 2D arithmetic domain, indices are integer 2-tuples

subdomain(P) = a domain of the same type as P whose indices
are guaranteed to be a subset of P’s

0 +

n+1 HEEEEN
BigD D LastRow

exterior = one of several built-in domain generators




CRRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

var A, Temp: [BigD] real;

Declare arrays

var = can be modified throughout its lifetime

. T = declares variable to be of type T

. [D] T = array with indexes from D and elements of type T

(no initializer) = values initialized to default value (0.0 for reals)

BigD A Temp




CRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

A[LastRow] = 1.0;

Set Explicit Boundary Condition

indexing by domain = slicing mechanism
array expressions = parallel evaluation




Heat Transfer in Chapel

Compute 5-point stencil

[(i,)) iIn D] = parallel forall expression over D’s indices, binding them
to new variables i and |

Note: since (i,j) e D and D < BigD and Temp: [BigD]

= no bounds check required for Temp(i,j)
with compiler analysis, same can be proven for A’'s accesses

2 + 4 i [

[(i,3) in D] Temp(i,3j) = (A(i-1,3J) + A(i+1,3)
+ A(j—/j_l) + A(l/j+1)) /

4;

CRRANY

THE SUPERCOMPUTER COMPANY




CRRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

Compute maximum change

op reduce = collapse aggregate expression to scalar using op

Promotion: abs() and — are scalar operators, automatically promoted to
work with array operands

const delta = max reduce abs (A[D] - Temp[D]):;



CRRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

Copy data back & Repeat until done

uses slicing and whole array assignment
standard do...while loop construct

A[D] = Temp[D];
} while (delta > epsilon);



CRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

Write array to console

If written to a file, parallel I/O would be used

writeln (A) ; —



CRRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel

dmapped Block([l..n,1..n])

With this change, same code runs in a distributed manner

Block domain map partitions indices across locales
— decomposition of arrays & default location of iterations over locales
Subdomains inherit parent domain’s distribution

BigD D LastRow A Temp




Heat Transfer in Chapel

config const n = 6, epsilon = 1.0e-5;
const BigD: domain(2) dmapped Block([l..n,1l..n]) =
D: subdomain (BigD) = [l1..n,1..n],

LastRow: subdomain (BigD) = D.exterior(1,0);

var A, Temp: [BigD] real;

A[LastRow] = 1.0;
do {
[(i,3) in D] Temp(i,j) = (A(i-1,3) + A(i+l1,7)
+ A(i,3-1) + A(i,3+1)) /
const delta = max reduce abs (A[D] - Temp[D]):;
A[D] = Temp[D];

} while (delta > epsilon);

writeln (A) ;

CRRANY

THE SUPERCOMPUTER COMPANY

o TS e R R



Variations




CRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel (double buffering)

config const n = 6, epsilon = 1.0e-5;
const BigD: domain(2) dmapped Block([l..n,1..n]) = [0..n+1,0..n+17,
D: subdomain (BigD) = [l1..n,1..n],

LastRow: subdomain (BigD) = D.exterior(1,0);
var A : [1..2][BigD] real;
A[..][LastRow] = 1.0;
var src = 1, dst = 2;
do {

Bi,j) in D] A(dst) (i,J) = (A(src) (i-1,j) + A(src) (i+l,3)

+ A(src) (i,3-1) + A(src) (i,3+1)) / 4;
const delta = max reduce abs (A[src][D] - A[dst][D]):;

B — dst;
} while (delta > epsilon);

writeln (A[src]);



CRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel (named directions)

config const n = 6, epsilon = 1.0e-5;
const BigD: domain(2) dmapped Block([l..n,1..n]) = [0..n+1,0..n+17,
D: subdomain (BigD) = [l1..n,1..n],

LastRow: subdomain (BigD) = D.exterior(1,0);
const north = (-1,0), south = (1,0), east = (0,1), west = (0,-1);
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {

[ind in D] Temp(ind) = (A(ind + north) + A(ind + south)

+ A(ind + east) + A(ind + west)) / 4;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln (A) ;



CRANY

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel (array of offsets)

config const n = 6, epsilon = 1.0e-5;
const BigD: domain(2) dmapped Block([l..n,1..n]) = [0..n+1,0..n+17,
D: subdomain (BigD) = [l1..n,1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
const offset: [1..4] (int, int) = ((-1,0), (1,0), (O0,1), «(O,-1));
var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[ind in D] Temp(ind) = (+ reduce [off in offset] A(ind + off))
/ offset.numElements;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln (A) ;



C=RA0Y

THE SUPERCOMPUTER COMPANY

Heat Transfer in Chapel (domain of offsets)

config const n = 6, epsilon = 1.0e-5;
const BigD: domain(2) dmapped Block([l..n,1..n]) = [0..n+1,0..n+17,
D: subdomain (BigD) = [l1..n,1..n],
LastRow: subdomain (BigD) = D.exterior(1,0);
const stencilSpace: domain(2) = [-1..1, -1..17,

offSet: sparse subdomain (stencilSpace)
= ((_llo)l (lIO)I (Oll)l (O/_l));

var A, Temp : [BigD] real;
A[LastRow] = 1.0;
do {
[ind in D] Temp(ind) = (+ reduce [off in offSet] A(ind + off))
/ offSet.numIndices;
const delta = max reduce abs (A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln (A7) ;





http://chapel.cray.com/
http://sourceforge.net/projects/chapel
mailto:chapel_info@cray.com

