
PGAS
Partitioned Global Address Space

Languages

Coarray Fortran (CAF)
Unified Parallel C (UPC)

Dr. R. Bader

Dr. A. Block

May 2010

Applying PGAS to classical HPC languages

Design target for PGAS extensions:

add only a few new rules to the languages

provide mechanisms to allow

smallest changes required to convert Fortran and C
into robust and efficient parallel languages

explicitly parallel execution: SPMD style programming model

data distribution: partitioned memory model

Standardization efforts:

Fortran 2008 draft standard (now in DIS stage, publication targeted for

August 2010)

separately standardized C extension (work in progress; existing document is

somewhat informal)

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 2

data distribution: partitioned memory model

synchronization vs. race conditions

memory management for dynamic sharable entities

Execution model: UPC threads / CAF images

Going from single to multiple
execution contexts

CAF - images:

Replicate single program a
fixed number of times

set number of replicates at

compile time or at execution
time

asynchronous execution – loose
coupling unless program-control-

led synchronization occurs

1

2

3

UPC uses zero-based
counting

UPC uses the term thread
where CAF has images

Separate set of entities on
each replicate

program-controlled exchange of

data

may necessitate synchronization

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 3

3

4
time

Execution model: Resource mappings

One-to-one:

each image / thread executed by a single physical processor core

Many-to-one:

some (or all) images / threads are executed by multiple cores each
(e.g., socket could support OpenMP multi-threading within an image)

One-to-many:

fewer cores are available to the program than images / threadsfewer cores are available to the program than images / threads

scheduling issues

useful typically only for algorithms which do not require the bulk of
CPU resources on one image

Many-to-many

Note:

startup mechanism and resource assignment method are
implementation-dependent

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 4

Simplest possible program

CAF – intrinsic integer functions for orientation

UPC

uses integer expressions for the same purpose

program hello

implicit none

write(*, '(''Hello from image '',i0, '' of '',i0)') &

this_image(), num_images()

end program
between 1 and
num_images()

non-repeatably unsorted output
if multiple images/threads useduses integer expressions for the same purpose

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 5

#include <upc.h>

#include <stdlib.h>

#include <stdio.h>

int main (void) {

printf(“Hello from thread %d of %d \n”, \

MYTHREAD, THREADS);

return 0;

} between 0 and
THREADS - 1

if multiple images/threads used

PGAS memory model

All entities belong to one of two classes:

s1 s2 s3 s4

global memory
address (e.g. ,128 bit)

global entities

x x x xlocal entities

execute on any image

execute on image where
„right“ x is located impossible

not explicitly shown:

purely local accesses

(fastest)

local (private) entities: only accessible to the image/thread
which „owns“ them � this is what we get from conventional
language semantics

global (shared) entities in partitioned global memory: objects
declared on and physically assigned to one image/thread
may be accessed by any other one

allows implementation for distributed memory systems

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 6

x x x x

per-image address physical

memory on

core execu-

ting image 4

the term „shared“:
� different semantics

than in OpenMP (esp.
for CAF)

Declaration of corrays/shared entities
(simplest case)

CAF:

coarray notation with explicit
indication of location (coindex)

symmetry is enforced
(asymmetric data must use

derived types – see later)

UPC:

uses shared attribute

implicit locality; various blocking
strategies

asymmetry – threads may have

uneven share of data

integer, &

codimension[*] :: a(3)
shared [1] int A[10];

more images � additional

coindex value

more threads � e.g., A[4] moves

to another physical memory

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 7

codimension[*] :: a(3)

integer a(3)[*]

shared [1] int A[10];

shared int A[10];

A(1)[1]

A(2)[1]

A(3)[1]

A(1)[2]

A(2)[2]

A(3)[2]

A(1)[3]

A(2)[3]

A(3)[3]

A(1)[4]

A(2)[4]

A(3)[4]

Image 1 2 3 4

A[0]

A[4]

A[8]

A[1]

A[5]

A[9]

A[2]

A[6]

A[3]

A[7]

Thread 0 1 2 3

UPC shared data: variations on blocking

General syntax

for a one-dimensional array

scalars and multi-dimensional

arrays also possible

Values for

Some examples:

complete matrix rows on each

thread (≥1 per thread)

shared [block size] type \

var_name[total size];

shared [N] float A[N][N];

Values for block size

omitted � default value is 1

integer constant (maximum
value UPC_MAX_BLOCK_SIZE)

[*] � one block on each

thread, as large as possible, size

depends on number of threads

[] or [0] � all elements on

one thread

storage sequence matches with
rank 1 coarray from previous

slide (� symmetry restored)

static THREADS environment

may be required (compile-time

thread number determination)

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 8

shared [*] int \

A[THREADS][3];

CAF shared data: coindex to image mapping

Coarrays

may be scalars

and/or have corank > 1

mapping to image index:

Intrinsic functions

query lower and upper cobounds

integer s[-2:*]

real z(10,10)[0:3,3:*]

lower cobound

of codimension 1

3 4 5

lcobound(coarray[,dim,kind])

ucobound(coarray[,dim,kind])

S[-2]

Image 1 2 3 4

S[-1] S[0] S[1]

upper cobound

of last codimension

0 3

z(:,:)[2,4]

programmer‘s responsibility for

valid coindex reference (see later

for additional intrinsic support)

return an integer array or scalar

scalar if optional dim argument

is present

example:

will produce the output

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 9

1

2

3

4

5

6

7

8

9

10

0

1

2

3

3 4 5

10 images available here
� ragged rectangular pattern

z(:,:)[3,5]

invalid

c
o
s
h
a
p
e

=
 (
/
4
,
3
/
)

ucobound(coarray[,dim,kind])

write(*, *) lcobound(z)

Simplest example

collective scatter: each

thread/image executes one
statement implying data transfer

Accessing shared data

CAF syntax:

UPC syntax:
1

q

a

(shared)

b

(private)

integer :: b(3), a(3)[*]

b = a(:)[q]

int b[3]; remember enforced symmetry

q: same value
on all images/threads

one-sided semantics:
Note:

initializations of a and q omitted –
there‘s a catch here …

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 10

q

q+1

n
time

b = a (from image/thread q)

„Pull“

int b[3];

shared [*] int a[THREADS][3];

for (i=0; i<3; i++) {

b[i] = a[q][i];

}

Locality control

CAF:
local accesses are fastest and trivial

coarray ↔ coindexed object

explicit coindex: usually a visual

indication of communication

UPC:
implicit locality � cross-thread

accesses easier to write

ensuring local access: explicit

mapping of array index to thread may

be required (see next slide)

supporting intrinsics:

integer :: a(3)[*]

a(:) = (/ … /)

same as a(:)[this_image()]

but probably faster

a block of A shared [B] int A[N];indication of communication

supporting intrinsics:

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 11

1

2

3

4

5

6

7

8

9

10

0

1

2

3

3 4 5

real :: z(10,10)[0:3,3*]

integer :: cindx(2), m1, img

cindx = this_image(z)

m1 = this_image(z,1)

img = image_index(z,(/2,4/))

img = image_index(z, (/2,5/)

on image 7, returns (/2,4/)

on image 7, returns 2

on all images, returns 7

on any image, returns 0

10 images
A[4*B]

A[4*B+1]
A[4*B+2]

…
A[5*B-1]

a block of A
on thread 4

shared [B] int A[N];

size_t img, pos;

img = \

upc_threadof(&A[4*B+2]);

pos = \

upc_phaseof(&A[4*B+2]);

on any thread, returns 4

on any thread, returns 2

0
1
2
…
B-1

p
h
a
s
e

A[5*B]

Work sharing + avoiding non-local accesses

Typical case

loop or iterator execution

CAF:

index transformations between

local and global

conditional may be inefficient

cyclic distribution may be slow

upc_forall

integrates affinity with loop

construct

integer :: a(nlocal)[*]

do i=1, nlocal

j = … ! global index

shared int a[N];

upc_forall (i=0; i<N; i++; i) {

a[i] = … ;

UPC:

loop over all, work on subset

affinity expression:

an integer � execute if
i%THREADS == MYTHREAD

a global address � execute if
upc_threadof(…) == MYTHREAD

example above: could replace „i“
with „&a[i]“

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 12

j = … ! global index

a(i) = …

end do

shared int a[N];

for (i=0; i<N; i++) {

if (i%THREADS == MYTHREAD) {

a[i] = … ;

}

}

a[i] = … ;

} afffinity expression

Race conditions – need for synchronization

Focus on image pair q, p:

three scenarios

Serial semantics

execution sequence

Parallel semantics

relaxed consistency

unordered segments of p, q

explicit synchronization by user
required to prevent races

Imposed by algorithm:

integer :: b(3), a(3)[*]

a = c

b = a(:)[q]

c

q

CAF terminology

Imposed by algorithm:

RaU („reference after update“) is
correct

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 13

time

a

b

q

p

RaU

a = c

sync all

b = a(:)[q]

for (…) a[n][i]= …;

upc_barrier;

for (…) b[i]=a[q][i];

global barrier:
enforce ordering of segments – on all images

UPC: Consistency modes

How are shared entities accessed?
relaxed mode � program assumes no concurrent accesses from different threads

strict mode � program ensures that accesses from different threads are separated,

and prevents code movement across these implicit barriers

relaxed is default; strict may have large performance penalty

Options for synchronization mode selection

variable level:

(at declaration)

strict shared int flag = 0;

relaxed shared [*] int c[THREADS][3];(at declaration)

code section level:

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 14

relaxed shared [*] int c[THREADS][3];

c[q][i] = …;

flag = 1;
while (!flag) {…};

… = c[q][j];

T
h

re
a

d
 q

T
h

re
a

d
 p

{ // start of block

#pragma upc strict

… // block statements

}

// return to default mode

program level

#include <upc_strict.h>

// or upc_relaxed.h

consistency mode on variable declaration overrides
code section or program level specification

q has same
value on
thread p as
on thread q

example for
a spin lock

CAF: partial synchronization

Synchronizing subsets Critical regions

only one thread at a time

code / time code / time

all images against one:

only one thread at a time
executes

order is unspecified

can have a name, but this has no

specific semantics

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 15

if (this_image() < 3) then

sync images ((/ 1, 2 /))

end if

if (this_image() == 1) then

: ! send data

sync images (*)

else

sync images (1)

: ! use data

end if

critical

: ! statements in region

end critical

images 2 etc.
don‘t mind
stragglers

Memory fences and atomic subroutines –
user-defined light-weight synchronization

CAF: spin-lock example UPC:

memory fence is defined by
upc_fence;

atomic functions: extension
supported by Berkeley UPC

Remarks

atomic entities are exempt from the synchronization rules

programmer‘s responsibility for proper handling

logical(ATOMIC_LOGICAL_KIND),save :: &

ready[*] = .false.

logical :: val

me = THIS_IMAGE()

if (me == p) then

: ! produce

segment Pi ends

memory fence: prevents reordering

of statements (A), enforces memory

loads (for coarrays, B)

memory fence: implied by many
other synchronization constructs

atomic operations:

� guarantee undivided state change,
but not a particular ordering or
appearance

� light-weight – if hardware supports
atomic operations, better-
performing than the big global
barrier hammer

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 16

: ! produce

sync memory ! A

call ATOMIC_DEFINE(ready[q], .true.)

else if (me == q)

val = .false.

do while (.not. val)

call ATOMIC_REF(val, ready)

end do

sync memory ! B

: ! consume

end if segment Qj starts

Locks – fine grain synchronization

Coordinate access to shared (=sensitive) data

sensitive data represented as “red balls”

Use a coarray/shared lock variable

modified atomically

consistency across images/threads

© 2010 LRZ 17PGAS Languages: Coarray Fortran/Unified Parallel C

Locks – fine grain synchronization

CAF:
simplest examples

UPC:
single pointer lock variable

use, intrinsic :: iso_fortran_env

type(lock_type) :: lock[*]

! default initialized to unlocked

logical :: got_it

lock(lock[1])

: ! play with red balls

unlock(lock[1])

like critical, but

more flexible

#include <upc.h>

upc_lock_t *lock; // local pointer

// to a shared entity

lock = upc_all_lock_alloc();

upc_lock(lock);

: // play with red balls

upc_unlock(lock);

collective call
same result on

each thread

lock must be a coarray � as many

locks as there are images

lock/unlock: no memory fence, only

one-way segment ordering

thread-individual lock generation is

also possible (non-collective)

lock/unlock imply memory fence

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 18

do

lock(lock[2], acquired_lock=got_it)

if (got_it) exit

: ! do other stuff

end do

: ! play with other red balls

unlock(lock[2])

upc_unlock(lock);

for (;;) {

if (upc_lock_attempt(lock)) break;

: // do other stuff

}

: // play with red balls

upc_unlock(lock);

upc_lock_free(lock);

UPC: Split-phase barrier

Separate barrier completion point from waiting point

this allows threads to perform other computations before they are
required to wait

for (…) a[n][i]= …;

upc_notify;

// do work not

// involving a

upc_wait;

completion of upc_wait implies synchronization

collective – all threads must execute sequence

CAF:

presently does not have this facility in statement form

can define using locks

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 19

code / time
completion point waiting point

upc_wait;

for (…) b[i]=a[q][i];

Dynamic entities: Pointers

Remember pointer semantics

different between C and Fortran

<type> , [dimension (:[,:,…])], pointer :: ptr

ptr => target ! ptr is an alias for target

<type> *ptr;

ptr = &var; ! ptr holds address of var

no pointer arithmetic
type and rank matching

pointer arithmetic
rank irrelevant
pointer-to-pointer
pointer-to-void

Pointers and PGAS memory categorization

both pointer entity and pointee might be private or shared � 4 combinations
possible

UPC: three of these combinations are realized

CAF: only two of them allowed, and only in a limited manner  aliasing only
to local entities

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 20

ptr = &var; ! ptr holds address of var pointer-to-void

Pointers continued …

CAF: UPC:

integer, target :: i1[*]

integer, pointer :: p1

type :: ctr

integer, pointer :: p2(:)

end type

type(ctr) :: o[*]

integer, target :: i2(3)

a coarray cannot have the
pointer attribute

int *p1;

shared int *p2;

shared int *shared p3;

int *shared pdep;

int a[N];

shared int b[N];

problem:
where does
pdep point?
all other threads
may not reference

entity „o“: typically asymmetric pointer to shared: addressing
overhead

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 21

o[1]%p2 i1[3] i1[4]

i2 i2 ix p1

integer, target :: i2(3)

ix=o[1]%p2 p3

pdep

p1 a[0] p2 p2 a [0]

(alias+coindexing) vs. address

p1 => i1

p2 = &b[1];b[1]
pdep
ref./def.

Dynamic entities: Memory management

CAF:

symmetric allocation required:

UPC:

collective allocation facilities which synchronize all images/threads

integer, &

allocatable :: id(:)[:]

allocate(id(100)[2:*])

deferred shape and coshape
shared [100] int *id;

id = (shared [100] int *) \

upc_all_alloc(\

THREADS,100*sizeof(int));

number
of blocks

bytes
per block

symmetric allocation required:

same type, type parameters,

bounds and cobounds on every
image

deallocation: synchronizes
before carried out

layout equivalent to coarray on the
left (note compile time constants)

arguments of type size_t

result is a pointer to shared (same
value on each thread)
deallocation

is not collective

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 22

deallocate(id)

of blocks per block

upc_barrier;

if (MYTHREAD==0) upc_free(id);

UPC: Pointer blocking and casting

Assume 4 threads: shared [2] int A[10];

shared int *p1;

shared [2] int *p2;

int *ploc;

A[0]

A[1]

A[8]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

Thread 0 1 2 3
if (MYTHREAD == 1) {

p1 = &A[0]; p2 = &A[0];

p1 += 4; p2 += 4;

ploc = (int *) &A[2];

ploc += 1;

Block size:

is a property of the shared type used

can cast between different block sizes �

pointer arithmetic follows blocking of pointer!

Cast to a pointer to local:

must point to data with affinity to current thread

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 23

A[8]

A[9]

ploc += 1;

}

p1

p2ploc

CAF: coarray type components

Declaration:

component must be allocatable

type extension: base type must already have a coarray component

type :: shared_stuff

real, allocatable :: r(:)[:]

: ! other (maybe non-coarray) components

end type

type extension: base type must already have a coarray component

Usage / Semantics

much like allocatable coarrays

entities must be scalar, may not be allocatable or pointers

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 24

type(shared_stuff) :: o

allocate(o%r(100)[-4:*])) ! synchronizes

: ! use o%r

deallocate(o%r)

Non-synchronizing
memory management facilities

CAF:

allocatable type components

UPC:

two routines, both called by

individual threads …

per-thread pointer to first element
of multiple distributed blocks

type :: ragged

integer, allocatable :: a(:)

end type

type(ragged) :: o[*]

allocate(o%a(10*this_image()))

dynamic allocation:
could be in shared
space

shared void *upc_global_alloc(

NBLOCKS,NBYTES);

remote accesses require

synchronization

… assuming b is large enough

memory allocated in shared
space on calling thread (→ single

block with affinity)

pointer to first element of alloca-

ted memory

require shared pointer to handle
data transfers (“directory”)

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 25

allocate(o%a(10*this_image()))

must be local can be
asymmetric

sync all

b(1:size(o[p]%a)) = o[p]%a

shared void *upc_alloc(NBYTES);

Coarrays in subprograms

Important cases:

1. coarray dummy arguments

2. local coarray entities

3. non-coarray dummy arguments
associated with a coindexed
object

Case 1:

restrictions ensure that no copy-
in/out can occur

Case 3:

copy-in/out will usually occur
� additional synchronization
rule needed

in/out can occur

for allocatable entities, synchro-
nization can occur inside subpro-
gram, symmetric call is required

Case 2:

SAVE attribute required, no
automatic entities

allocatable is allowed �

synchronization is implied

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 26

code / time

p

a
q

r

a[q] = …

UPC collective operations

Separate include file

Two types:

data redistribution (e.g., scatter,
gather)

computation operations (reduce,
prefix, sort)

Synchronization mode:

Example:

T is one of the following types:

#include <upc_collective.h> void upc all reduceT(

shared void *restrict dst,

shared const void *restrict src,

upc_op_t op, size_t nelems,

size_t blk size, T(*func)(T, T),

upc_flag_t flags);

Synchronization mode:
constants of type upc_flag_t

entry or exit point, synchronize
not at all / wrt data on entered
threads / wrt all threads � allow
function to read/write data

can combine using „|“

op is one of the following
operations: UPC_ADD, UPC_MULT,
UPC_AND, UPC_OR, UPC_XOR, UPC_LOGAND,
UPC_LOGOR, UPC_MIN,UPC_MAX, UPC_FUNC,
UPC_NONCOMM_FUNC

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 27

NOSYNC

UPC_ _ MYSYNC

ALLSYNC

IN

OUT

C/UC – signed/unsigned

char

L/UL – signed/unsigned

long

S/US – signed/unsigned

short

F/D/LD –

float/double/long double

I/UI – signed/unsigned int

Parallel I/O extensions in UPC

Extension to UPC

defined in upc_io.h

provide collective I/O
functions

local and shared reads and
writes (individual vs. shared
file pointer)

otherwise weak semantics
(upc_all_fclose(),
upc_all_fsync())

Shared file pointer

one pointer shared by all
threads

cannot use in conjunction
with pointers to local buffersIndividual file pointer

read thread-specific sections
of a file

write thread-specific sections
of a file

special flag for atomicity and
consistency semantics (writes
from multiple threads)

with pointers to local buffers

consistency requirements for
arguments

I/O on shared vs. private data

can do both using individual
file pointers

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 28

Possible future developments

Teams

load imbalanced problems (partial synchronization)

recursive algorithms

Asyncs and Places

memory and function shipping

support for accelerator devices?

Collective calls in CAFCollective calls in CAF

maybe even asynchronous?

Process topologies in CAF

more general abstraction than multiple coindices

Global variables and co-pointers in CAF

increase programming flexibility

Split-phase barrier in CAF

Parallel I/O in CAF

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 29

Thank you for your attention!

Any questions?Any questions?

