™

Partitioned Global Address Space
Languages

Coarray Fortran (CAF)
Unified Parallel C (UPC)

Dr. R. Bader
Dr. A. Block

May 2010

Lqir-

rz. Applying PGAS to classical HPC languages

@ Design target for PGAS extensions:
smallest changes required to convert Fortran and C
into robust and efficient parallel languages

* add only a few new rules to the languages
e provide mechanisms to allow

explicitly parallel execution: SPMD style programming model
data distribution: partitioned memory model
synchronization vs. race conditions

memory management for dynamic sharable entities

@ Standardization efforts:
e Fortran 2008 draft standard (now in DIS stage, publication targeted for
August 2010)
» separately standardized C extension (work in progress; existing document is
somewhat informal)

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

[

o

Execution model: UPC threads / CAF images

g

@ Going from single to multiple @ Replicate single program a
execution contexts fixed number of times
e CAF - images: e set number of replicates at
= compile time or at execution
7 time
e asynchronous execution — loose
coupling unless program-control-
@ led synchronization occurs

Sy @ Separate set of entities on
each replicate
* program-controlled exchange of
data
* UPC uses zero-based * may necessitate synchronization
counting
e UPC uses the term thread
where CAF has images

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

N

L-zL Execution model: Resource mappings

ko

One-to-one:
e each image / thread executed by a single physical processor core
Many-to-one:

e some (or all) images / threads are executed by multiple cores each
(e.g., socket could support OpenMP multi-threading within an image)

One-to-many:
e fewer cores are available to the program than images / threads
e scheduling issues

e useful typically only for algorithms which do not require the bulk of
CPU resources on one image

Many-to-many
Note:

e startup mechanism and resource assignment method are
Implementation-dependent

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

P——

-

r Simplest possible program

g

@ CAF - intrinsic integer functions for orientation

program hello
implicit none
write(*, '(''Hello from image '',i0, '' of
this_image (), num_images ()
end program

",iO)') &

L between 1 and |

num_images ()

@ UPC non-repeatably unsorted output
® uses integer expressions for the same purpose if multiple images/threads used

#include <upc.h>
#include <stdlib.h>
#include <stdio.h>

int main (void) {
printf (“Hello from thread %d of %d \n”, \
MYTHREAD, THREADS) ;

return O;
} between 0 and]
{ THREADS - 1

J

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

"

PGAS memory model

’

@ All entities belong to one of two classes: ———~ ________ .
/Koute on any @\ i

global entities : E
not explicitly shown: S1 82 S3 ; S4

purely local accesses
(fastest)

global memory '

execute on image where address (e.g. ,128 bit) l >
,right“x is located m
|
| | entiti '
ocal entities X X X : X
|
l .
per-image address : physical
|

memaory on
e |local (private) entities: only accessible to the image/thread | core execu-

which ,owns® them -> this is what we get from conventional} ting image 4
language semantics SRS .

¢ global (shared) entities in partitioned global memory: objects
declared on and physically assigned to one image/thread the term shared*:

/

may be accessed by any other one > different semantics
e allows implementation for distributed memory systems]nggX‘F())pe”MP (esp.

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 6

P——

o Declaration of corrays/shared entities
F (simplest case)
@ CAF: @B UPC:

e coarray notation with explicit ® uses shared attribute
indication of location (coindex) « implicit locality; various blocking

® symmetry is enforced strategies
(asymmetric data must use e asymmetry — threads may have
derived types — see later) uneven share of data

integer, &

codimension[*] :: a(3) shared [1] int A[10];

Seres a(E) 19 shared int A[10];
Image 1 2 3—] 4 Thread 0O 1 2 3
: s B : : z
A(1)[1] : A()[2] & A(1)[3] : A(1)[4] Al0] ¢ A[1] i A[l2] i A[3]
A(2)[1] A(2)[2] A(2)[3] A(2)[4] Al4] A[5] A[6] Al7]
A()1] : AB)I2] : A(3)[3] : A(3)[4] A8l i A[9] :
* more images - additional * more threads > e.g., A[4] moves
coindex value to another physical memory

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

[

o

UPC shared data: variations on blocking

@ General syntax B Some examples:
e for a one-dimensional array

shared [N] float A[N][N];

shared [block size] type \

var _name[total size]; ¢ complete matrix rows on each
thread (=1 per thread)

e scalars and multi-dimensional
arrays also possible

@ Values for block size shared [*] int \

e omitted > default value is 1 A[THREADS] [3];

* integer constant (maximum e storage sequence matches with
value UPC_MAX BLOCK_SIZE) rank 1 coarray from previous

e [*] -2 one block on each slide (= symmetry restored)
thread, as large as possible, size e static THREADS environment
depends on number of threads may be required (compile-time

e [] or [0] - all elements on thread number determination)
one thread

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

er_l CAF shared data: coindex to image mapping

Image 1 2 3 4

@ Coarrays

integer s[-2:*] S[-2] i Sl i S[0] i S[1]

* may be scalars

¢ and/or have corank > 1

real z(10,10)[0:3,3:%] | Intrinsic functions

ower cobound |- T— Copor Cob{) — e query lower and upper cobounds
Sl CeRIMENEON 1 of last codimension
° mapping to image index: lcobound (coarray|, dJ_.m, kJ_.nd])
ucobound (coarray[,dim, kind])
< 3 4 5
™ z(:,:)[2,4] :
< O 1158 / ¢ return an integer array or scalar
S o|[@] 19| 10images available here ¢ scalar if optional dim argument
Il : - ragged rectangular pattern .
o o IS present
S a K . * example:
% 3 |4
§ 8 write(*, *) lcobound(z)

e programmer‘s responsibility for
valid coindex reference (see later
for additional intrinsic support)

will produce the output o 3

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

P——

N

r

g

Accessing shared data

@ Simplest example
e collective scatter: each

@ CAF syntax:

integer :: b(3), a(3)[*]
thread/image executes one
statement implying data transfer b = a(:)lql
1 g: same value
@ UPC syntax: on all images/threads
int b[3]; remember enforced symmetry
g_” shared [*] int a[THREADS] [3];
for (i=0; i<3; i++) {
n b[i] = a[q][1];
time N }
. ded semantics: @ Note:
one-sidead semantics. ¢ initializations of a and g omitted —
b = a (from image/thread q) there's a catch here ...
»Pull®
© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 10

P——

N

r

Locality control

g

@ CAF: @ UPC:
® |ocal accesses are fastest and trivial # implicit locality = cross-thread
e 2(3) [*] acces.ses easier to write .
a(:) = (/ .. /) * ensuring local access: explicit
e mapping of array index to thread may
sameasa(:) [this_image ()] be required (see next slide)
but probably faster R
: : e supporting Intrinsics:
® coarray < coindexed object
e explicit coindex: usually a visual
indication of communication shared [B] int A[N]; a block of A
* supporting intrinsics: size t img, pos; on thread 4
. 1_':eal 26 ?.(10{1((:)1) [(2):3,31] _ img = \ 0 A[4*B]
10 images | integer :: cindx(2), ml, img upc_threadof (&A[4*B+2]); | 1 A[4*B+1]
3 4 5 |cindx = this_image (z) on any thread, returns 4 2 A[4*B+2]
onimage 7, returns (/2,4/) pos = \
. * -
0 |1/15]19 T, o S e,) upc_phaseof (§A[4*B+2]) ; B-1| A[5*B-1]
1 2 6 10 on image 7, returns 2 on any thread, returns 2 T
> [3 img = image_index(z, (/2,4/)) % .
on all images, returns 7 %. A[5"B]
3 14 img = image_index(z, (/2,5/) e
on any image, returns 0
© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 11

Y Work sharing + avoiding non-local accesses

B Typical case
* |oop or iterator execution
@ CAF:

¢ index transformations between
local and global

¢ conditional may be inefficient
¢ cyclic distribution may be slow

@ upc_forall

¢ integrates affinity with loop
construct

shared int a[N];

upc_forall (i=0; i<N; i++; i) {
al[i] = .. ;

} { afffinity expression

integer :: a(nlocal) [*]
do i=1l, nlocal
j = .. ! global index
a(i) = ..
end do
@ UPC:

¢ |oop over all, work on subset

shared int a[N];
for (i=0; i<N; i++) {
if (i%THREADS == MYTHREAD) ({
afi] = .. ;
}
}

¢ affinity expression:

an integer - execute if
i%$THREADS == MYTHREAD

a global address - execute if
upc_threadof (..) == MYTHREAD

example above: could replace ,,i*
with ,&a[i]*

© 2010 LRZ

PGAS Languages: Coarray Fortran/Unified Parallel C

12

"

Race conditions — need for synchronization

g

integer :: b(3), a(3)[*]

a=c
b = a(:)[q]

@ Focus on image pair q, p:
¢ three scenarios

Y

N\ [\
p e
time E.F.{EEJ.—E >

@ Serial semantics
® execution sequence

@ Parallel semantics

] CAF terminology
e relaxed consistency

/
¢ unordered segments of p, q

¢ explicit synchronization by user
required to prevent races

@ Imposed by algorithm:

¢ RaU (,reference after update®) is
correct

global barrier:
enforce ordering of segments — on all images

i

a

= C for (..) a[n]l[i]l= ..;

sync all @ upc_barrier;

b

= a(:) [q] for (..) b[i]l=a[ql[i];

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 13

¥

UPC: Consistency modes

@ How are shared entities accessed?

relaxed mode - program assumes no concurrent accesses from different threads
strict mode - program ensures that accesses from different threads are separated,

and prevents code movement across these implicit barriers
* relaxed is default; strict may have large performance penalty

@ Options for synchronization mode selection

® variable level:
(at declaration)

strict shared int flag = O;
relaxed shared [*] int c¢[THREADS] [3];

[example for !
a spin lock

e code section level:

o) o _ q has same
§ c [q] [1] = ey g while (! flag) {...} ’ value on

=| flag = 1; £l.. = clqllil; thread p as
~ = on thread q

® program level

{ // start of block

}

#fpragma upc strict
.. // block statements

#include <upc_strict.h>
// or upc_relaxed.h

consistency mode on variable declaration overrides

// return to default mode code section or program level specification

© 2010 LRZ

PGAS Languages: Coarray Fortran/Unified Parallel C 14

Ll

CAF: partial synchronization

@ Synchronizing subsets
—

code / tim

Y

(¢
A 4

if (this_image() < 3) then
sync images ((/ 1, 2 /))
end if

@ Critical regions

—

code / time N

¢ only one thread at a time
executes

e order is unspecified

¢ all images against one:

if (this_image() == 1) then
! send data
sync images (*)

else images 2 etc.
sync images (1) don‘t mind
: ! use data stragglers

]

end if

critical
! statements in region
end critical

¢ can have a name, but this has no
specific semantics

© 2010 LRZ

PGAS Languages: Coarray Fortran/Unified Parallel C 15

P——

1

'ﬁ Memory fences and atomic subroutines —
| user-defined light-weight synchronization

atomic entities are exempt from the synchronization rules
programmer’s responsibility for proper handling

@ CAF: spin-lock example

logical (ATOMIC_LOGICAL_KIND),hsave :: &
ready[*] = .false.
logical :: wval

me = THIS IMAGE () segment P, ends
if (me == p) then
: ! produce

sync memory !' A

@ UPC:

¢ memory fence is defined by
upc_fence;

¢ atomic functions: extension
supported by Berkeley UPC

¥ Remarks
¢ memory fence: implied by many

call ATOMIC_ DEFINE (ready[q], .true.)
else if (me == q)
val = .false.
do while (.not. wval)
call ATOMIC_REF (val, ready)
end do
sync memory !' B

: ! consume
end if segment Q, starts

e memory fence: prevents reordering
of statements (A), enforces memory
loads (for coarrays, B)

other synchronization constructs

¢ atomic operations:

» guarantee undivided state change,
but not a particular ordering or
appearance

> light-weight — if hardware supports
atomic operations, better-
performing than the big global
barrier hammer

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 16

LrLl Locks — fine grain synchronization

@ Coordinate access to shared (=sensitive) data
e sensitive data represented as “red balls”
B Use a coarray/shared lock variable

e modified atomically
e consistency across images/threads

ij @

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

o¥

Lr Locks — fine grain synchronization

@ CA

S|mplest examples

@ UPC:

* single pointer lock variable

use, intrinsic :: iso_fortran_env

type (lock_type) :: lock[*]
! default initialized to unlocked

logical :: t_it . .
ogres goE~ ! like critical, but
lock (lock[1]) more flexible

! play with red balls
unlock (lock[1])

do
lock (lock[2], acquired lock=got_it)
if (got_it) exit
! do other stuff
end do
! play with other red balls
unlock (lock[2])

* |lock must be a coarray - as many
locks as there are images

e |ock/unlock: no memory fence, only
ohe-way segment ordering

#include <upc.h>

upc_lock_t *lock; // local pointer
// to a shared entity

lock = upc_all lock_alloc();

collective call)
upc_lock (lock) ; same result on
: // play with red balls each thread J

upc_unlock (lock) ;

for (;;) {
if (upc_lock_attempt (lock)) break;
: // do other stuff

}

: // play with red balls

upc_unlock (lock) ;

upc_lock_free (lock);

¢ thread-individual lock generation is
also possible (non-collective)

e |ock/unlock imply memory fence

© 2010 LRZ

PGAS Languages: Coarray Fortran/Unified Parallel C

18

P——

¥

UPC: Split-phase barrier

r

@ Separate barrier completion point from waiting point

e this allows threads to perform other computations before they are

required to wait

for (..) a[n]l[i]l= ..;

upc_notify; >

// do work not

// involving a

upc_wait; >

for (..) blil=alql[i]; _—=
completion point

code / time

mng point

>

e completion of upc_wait implies synchronization
¢ collective — all threads must execute sequence

@ CAF:
e presently does not have this facility in statement form

e can define using locks

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

19

LqIF\

o

r Dynamic entities: Pointers

@ Remember pointer semantics
¢ different between C and Fortran

<type> , [dimension (:[,:,..])], pointer :: ptr

ptr => target ! ptr is an alias for target

<type> *ptr;

ptr = &var; ! ptr holds address of var

@ Pointers and PGAS memory categorization

no pointer arithmetic
type and rank matching

pointer arithmetic
rank irrelevant
pointer-to-pointer
pointer-to-void

® both pointer entity and pointee might be private or shared - 4 combinations

possible
¢ UPC: three of these combinations are realized

e CAF: only two of them allowed, and only in a limited manner < aliasing only

to local entities

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

20

Ll

Pointers continued ...

@ CAF: @ UPC:
%nteger, ta?get 11[*] int *pl;
integer, pointer pl shared int *p2;
a coarray cannot have the shared int *shared p3;
ty?e ctr ;Toz.nter attribute int *shared pdep; oroblem:
integer, pointer p2(:) where does
end type . . pdep point?
type (Zir) o[*] int a [N]_ ’ all other threads
YpP shared int b[N]; may notreference
integer, target i2(3)
* entity ,0“ typically asymmetric ¢ pointer to shared: addressing
overhead
ix=0[1]%p2 3 : : : de
P B[] 2 = bl11; eqsmer
pde : : :
pt—=a[0] a [0]
T T T SRR LU >
T, (alias+coindexing) vs. address ...t
© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 21

Ll

Dynamic entities: Memory management

collective allocation facilities which synchronize all images/threads

@ CAF:

integer, & deferred shape and coshape

allocatable :: id(:)[:]

allocate (id (100) [2:*])

¢ symmetric allocation required:
same type, type parameters,
bounds and cobounds on every
image

deallocate (id)

¢ deallocation: synchronizes
before carried out

@ UPC:

shared [100] int *id;
id = (shared [100] int *) \
upc_all_alloc(\

THREADS, 100*sizeof (int));
N 1

I number l I bytes
of blocks per block

® |ayout equivalent to coarray on the
left (note compile time constants)

e arguments of type size_t

* result is a pointer to shared (same
value on each thread)

e deallocation

upc_barrier;
if (MYTHREAD==0) upc_free (id);

is not collective

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

22

L—:‘L UPC: Pointer blocking and castin
= =4 J J

shared [2] int A[1l0];
shared int *pl;
shared [2] int *p2;
int *ploc;

@ Assume 4 threads:

Thread 0O 1 2 3 if (MYTHREAD —= 1) {
: pl = &A[0]; p2 = &A[0];
(0]~ 7A[2] =5 A4] =i Al6] Pl += 4; p2 += 4;
$"‘A[l]": : YA[3] - A[5] _,i»"' Al7] ploc = (int *) &A[2];
A[8] \\‘;\-_:[________________ ploc += 1;
Al9] : }

ploc | |p2| @ Block size:
* s a property of the shared type used

e can cast between different block sizes >
pointer arithmetic follows blocking of pointer!

@ Cast to a pointer to local:
¢ must point to data with affinity to current thread

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 23

N

CAF: coarray type components

B Declaration:
type :: shared_stuff
real, allocatable :: r(:)[:]
! other (maybe non-coarray) components
end type

e component must be allocatable

e type extension: base type must already have a coarray component
@ Usage / Semantics

e much like allocatable coarrays

e entities must be scalar, may not be allocatable or pointers

type (shared_stuff) :: o
allocate (o%r (100) [-4:*])) ! synchronizes
! use o%r

deallocate (o%r)

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

Non-synchronizing
memory management facilities

P——

-

r

g

@ CAF: ® UPC:

¢ allocatable type components ¢ two routines, both called by
individual threads ...

type :: ragged
integer, allocatable :: a(:) shared void *upc_global alloc(
end type dynamic allocation: NBLOCKS, NBYTES) ;
e * | in sh : ;
type(ragged) :: of*] coudbeinshared * per-thread pointer to first element

space

allocate(o a(10*thls S reea ())] ‘ of multiple distributed blocks

| muﬁbekm;_] can be shared void *upc_alloc (NBYTES);
asymmetric :

¢ memory allocated in shared

* remote accesses require space on calling thread (— single
synchronization block with affinity)
syne all ¢ pointer to first element of alloca-
b(l:size(o[pl%a)) = o[p]%a ted memory
¢ require shared pointer to handle
.. assuming b is large enough data transfers (“directory”)

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 25

P——

o

r Coarrays in subprograms

’

@ Important cases: @ Case 3:
1. coarray dummy arguments ® copy-in/out will usually occur
2. local coarray entities —> additional synchronization
3. non-coarray dummy arguments rule needed
associated with a coindexed
object N
@ Case 1: A
- G
® restrictions ensure that no copy- \,\o°)
in/out can occur P 7
* for allocatable entities, synchro-
nization can occur inside subpro- P
gram, symmetric call is required
@ Case 2: q

e SAVE attribute required, no
automatic entities

¢ allocatable is allowed -
synchronization is implied

vA

code / time N

o~

D
=
T

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 26

P——

N

r

’

UPC collective operations

@ Separate include file

#include <upc_collective.h>

@ Example:

@ Two types:

e data redistribution (e.g., scatter,
gather)

e computation operations (reduce,
prefix, sort)

@ Synchronization mode:
e constants of type upc_flag_ t

NOSYNC
vec. 1N Mmysync
OUT ar1syYNC

e entry or exit point, synchronize
not at all / wrt data on entered
threads / wrt all threads = allow
function to read/write data

e can combine using ,|*

void upc all reduceT (
shared void *restrict dst,
shared const void *restrict src,
upc_op_t op, size_t nelems,
size_t blk size, T(*func) (T, T),
upc_flag t flags);

e T is one of the following types:

C/UC - signed/unsigned L/UL — signed/unsigned
char long

S/US - signed/unsigned F/D/LD —
short float/double/long double

I/Ul — signed/unsigned int

e op is one of the following

operations: urPC_ADD, UPC_MULT,
UPC_AND, UPC_OR, UPC_XOR, UPC_LOGAND,
UPC_LOGOR, UPC_MIN,UPC_MAX, UPC_FUNC,
UPC_NONCOMM_FUNC

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 27

"

Parallel 1/0 extensions in UPC

@ Extension to UPC e otherwise weak semantics
e defined in upc_io.h (upc_all_fclose(),

e provide collective I/O upc_all_fsync())

functions @ Shared file pointer

» local and shared reads and one pointer shared by all
writes (individual vs. shared threads
file pointer) e cannot use in conjunction

@ Individual file pointer with pointers to local buffers

» read thread-specific sections ® consistency requirements for
of a file arguments

» write thread-specific sections @ 1/O on shared vs. private data
of a file e can do both using individual

» special flag for atomicity and file pointers

consistency semantics (writes
from multiple threads)

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 28

P——

N

’

r

Possible future developments

Teams

¢ |load imbalanced problems (partial synchronization)
® recursive algorithms

Asyncs and Places

e memory and function shipping

e support for accelerator devices?

Collective calls in CAF

® maybe even asynchronous?

Process topologies in CAF

® more general abstraction than multiple coindices
Global variables and co-pointers in CAF

® increase programming flexibility

Split-phase barrier in CAF

Parallel /0 in CAF

© 2010 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C

29

™

Thank you for your attention!

Any questions?

